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PREFACE
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in Advanced Air-Breathing Propulsion Systems, for the Lewis

Research Center of the National Aeronautics and Space
Administration.
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SUMMARY

This report describes the work accomplished during the fifth

six-month period of an analytical, design, and experimental

program directed at developing compressor end seals, stator

interstage seals, and stator pivot seals for advanced air-breathing

propulsion systems.

Feasibility analyses of the OC diaphragm thin-strip seal, the

semirigid one-piece seal, and the flexure-mounted shoe seal

have been completed. Each of these three concepts has been

analyzed in both an end seal configuration and an interstage

seal configuration, thus completing the Task I work. Results

of the analyses indicated that the best configurations were the

OC diaphragm end seal and the semirigid interstage seal. Both
of these seals have been chosen for further evaluation under

Task II.

Most of the work under Tasks II and IV has been concerned

with procurement aiad fabrication of the seals, instrumentation,

and test equipment. In addition, a gas-film analysis and a
thermal analysis of the one-side floated-shoe end and interstage

seals were performed under Task II. Testing has started on the

single-bellows vane pivot seal, (Task IV) but no results are

available as yet.

No work has been performed under Task III in the last six
months.

Milestone Charts are presented at the end of this report.

o°°
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SEMIANNUAL REPORT NO. 5

DEVELOPMENT OF COMPRESSOR END SEALS,

STATOR INTERSTAGE SEALS, AND STATOR PIVOT

SEALS IN ADVANCED AIR-BREATHING

ENGINES

by

Ft. tl4.Hawkins, AoH. McKibbin, and C. C. W. Ng

ABSTRACT

Tracking analyses and thermal analyses of the OC diaphragm

thin-strip seal, the semirigid interstage seal, and the flexure-

mounted shoe seal are discussed. The tracking analysis in-

cludes the effects of seal tilt angle, engine speed (take-off,

cruise, and idle conditions), and natural frequencies of the

seal. Primary emphasis is placed on the OC diaphragm end

seal and the semirigid interstage seal, since these designs

were chosen for further evaluation. In addition the prepara-

tions for testing the end and interstage seals and the vane

pivot seals are discussed.
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INTRODUCTION

High performance, modern multistage axial-flow compressors built with state-of-the-art

features incorporate several air leak paths which are detrimental to compressor performance.

Elimination or significant reduction of these leaks would result in a compressor of higher

efficiency and possibly smaller size. Some typical areas of leak paths with estimates of per-

cent air loss and potential effect on compressor performance are:

Effect on

Air Loss Compressor Efficiency

End Seal 0.6% 1.0%

Interstage Stator Seals 0.9% 1.0%

(ten stages)

Vane Pivot Seals 0.2% per 0.2% per

(variable stator) stage stage

Increases in compressor efficiency are traditionally sought by means of compressor geometry

redesign. A few extra points in efficiency often mean the difference between a successful or

an unsuccessful engine design. These increases as a result of geometry change are always very
expensive and not always successful. On the other hand, the losses to efficiency as a result of

air leaks are strikingly large, and real gains are within reach at a relatively low cost. The gains

in efficiency, however, must be balanced against any detrimental effect that improved seal-

ing may have on the engine, such as lower reliability or increased weight.

This program will provide for a research, analyticaI, and test program having as its goal the

development of compressor end seals, stator interstage seals, and vane pivot seals which ex-

hibit lower air leakage rates than those currently in use. This will be accomplished using

components of such size, materials, and designs as to be considered applicable to compressors

for engines capable of supersonic aircraft propulsion.

PAGE NO. I
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I. TASK I

CONCEPT FEASIBILITY ANALYSIS PROGRAMS
FOR COMPRESSOR END SEALS AND STATOR

INTERSTAGE SEALS

A. INTRODUCTION

In the initial feasibility analyses, a one-side floated-shoe seal and a two-side floated shoe

seal were developed. These designs, however, were sufficiently similar in their basic design

concepts that they would leave the program without a radically different conceptual backup
if they failed to meet design requirements on test. Therefore, Contract Amendment Number

2 was authorized, providing for the feasibility analysis of an OC diaphragm thin-strip seal. In

addition to performing a feasibility analysis of that seal, the contractor has considered two

backup seal concepts: the flexure-mounted shoe seal and the semirigid one-piece seal.

The feasibility analysis conducted on all three seals (OC diaphragm, flexure-mounted shoe,

and semirigid) has been completed. Both the OC diaphragm and the semirigid seal concepts

appear to yield satisfactory predicted performance characteristics. The contractor has there-

fore requested and received approval to finalize the designs of the OC diaphragm thin-strip

seal for the end seal application (shown in Figure 1) and the semirigid one-piece seal for the

interstage location (shown in Figure 2). The flexure mounted shoe seal was removed from

further consideration at the completion of the Task I feasibility analysis.

Under the terms of the contract, four seals are to be provided by the contractor: two com-

pressor end seals and two stator interstage seals. NASA approval has already been granted

for detailing and hardware procurement of the one-side floated-shoe end seal and the one-

side floated-shoe interstage seal under Task II. At the present time, the one-side floated-shoe

end seal is being fabricated. The one-side floated-shoe interstage seal has been detailed, but

procurement had been held in abeyance until the conclusion of the feasibility analysis con-

ducted on the OC diaphragm and the semirigid seal concepts. Since the one-side floated-shoe

interstage seal design appears to be competitive with the OC diaphragm and semirigid seal

concepts from the standpoint of predicted performance characteristics, the contractor has

started procurement of this segmented seal.

1. DESCRIPTION OF THE TWO SEAL CONCEPTS OF CONTRACT

AMENDMENT NUMBER 2 SELECTED FOR FINAL DESIGN

The OC diaphragm end seal (Figure 1) employs a thin, flexible, one-piece, annular strip

as the primary seal element, providing a high degree of conformability to runner distor-

tion. The thin strip is supported by three C-shaped semitoroidal diaphragms mounted on

a floating secondary seal carrier. The secondary carrier provides for axial travel relative to

the main engine structure, and a piston ring seal is used between the carrier and the en-
gine structure. One of the C diaphragms forms a seal between the high-pressure and the

low-pressure areas. The other two C diaphragms face each other and form a chamber to

which the high pressure air flows before reaching the primary seal face. This design, there-
fore, permits direct balancing of the moments on the thin strip. Further, the thin-strip

PAGE NO. 3
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primary sealing element provides flexibility, and, therefore, tracking capability. The moment

balance is achieved with methods which are nearly independent of angular displacements of

the strip, making low residual moment imbalance easy to achieve. See page 49 for a detailed

description of the seal.

The semirigid interstage seal (Figure 2) recognizes the possibility that a semirigid one-piece

primary seal element might be provided with a combination of high gas-film stiffness and

low structural stiffness so that adequate gas film thickness is maintained during all operat-

ing conditions. The feasibility of this design rests primarily on the ability of the seal to

perform satisfactorily with a conically tilted seal face, the tilt resulting primarily from
axial thermal gradients. The design also requires that runner conical distortion be relative-
ly low and in the same direction as the seal distortion. The seals's cross-sectional stiffness

must be high enough to render the seal insensitive to residual moment imbalance resulting

from design drawing tolerances or change in operating conditions, yet low enough to allow

the seal to conform to runner waviness. See page 74 for a detailed description of the seal.

o COMPARISON OF THE RELATIVE MERITS AND POSSIBLE

SHORTCOMINGS OF THE TWO SEAL CONCEPTS OF

CONTRACT AMENDMENT NUMBER 2

The leakage rates of the OC diaphragm seal are approximately twice as high as

those of the semirigid seal.

Approximate weights of the main seal assemblies are 18 pounds for the OC diaphragm

seal and 10 pounds for the semirigid seal.

Dynamic seal performance characteristics are satisfactory for both end seal designs,

and interstage seal designs at cruise and take off conditions. In the interstage

location at idle operating conditions, both seals yield low minimum film thicknesses.

Heat generation and thus frictional power losses are nearly 50 percent lower with

the semirigid seal design than those obtained with the OC diaphragm seal.

The semirigid seal design is simpler, and thus can be manufactured more econom-

ically than the OC diaphragm.

Based upon the above comparison, the semirigid seal has many inherent ad-
vantages over the OC diaphragm seal. The OC diaphragm seal may, however, find

application in cases where high seal ring flexibility is required to conform to runner
distortions and where thermal gradients across the semirigid seal render this design

impractical.
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B. SEAL TRACKING ANALYSIS

This portion of the report is concerned with the formulation of the tracking analysis for each
of the three seal configurations considered under Contract Amendment No. 2. Once form-

ulated and programmed, this analysis should serve as a valuable tool in establishing the seal's

response under dynamic conditions. The analysis consists of two parts: one covering the

flexure-mounted shoe seal design, and a second part covering the OC diaphragm thin strip

seal design and the semirigid design. The second part has been programmed for the IBM-360

computer. The program has been checked out, and solutions to a typical sample problem
obtained. The program listing is presented in Appendix A.

1. TRACKING ANALYSIS OF THE FLEXURE-MOUNTED SHOE SEAL

In designing a flexure-mounted shoe seal (Figure 3), it is necessary to know how closely the

shoe will track with various modes of rotor oscillation. In this section, the motion of each

shoe is analyzed by assuming that each individual shoe and the hoop are represented by a

system of two rigid masses connected by a beam spring and that the system's internal shear
and moment can be characterized by four spring stiffnesses.

This system of two masses and two springs is depicted in Figure 4. The mass of the shoe

is denoted by mt, and the equivalent mass (m:) or the hoop assignable to each shoe is
considered to be the total hoop mass divided by the number of shoes. Each shoe is attach-

ed to the frame by a back-up spring having a spring rate k 2 and is connected to the hoop by
means of a beam spring. The gas film is represented by a spring system having two direct-
and two cross-coupling stiffnesses.

The imposed motion of the rotor face is denoted by 6 and e, where 6 is the axial motion and

e the twist motion. 6 is defined as positive downward, and e is positive in the direction as
shown in Figure 4. The shoe is assumed to have a plane motion which is constrained to

oscillate in the y and a directions, i.e. the axial and angular directions. The axial oscillation

is denoted by u 1 , defined as positive downward, and the angular motion is denoted by a,
defined as positive counterclockwise. The hoop is assumed to have an axial oscillation only,

and is represented by u 2 (defined as positive downward). A free-body diagram of the shoe

is also shown in Figure 4. The gas film's forces are represented by an upward force acting

through the centroid of the shoe section having a magnitude Kss (u I - 8) + K s (a - e)

wise moment having a magnitude K as (Ul - 6) + K_a (a - e). The forces exerted by the

beam spring are likewise represented by an upward force, Bss (u 1 - u 2) + Bsa a, acting at

a distance b 2 from the centroid, and by a clockwise moment having a magnitude of Bas (u 1 -

u 2) + B.. a. The inertia forces of the flex-shoe are an upward force, m I ii 1, acting through

centroid and a clockwise moment, Ipa. The equations of motion of the flex-shoe and the
hoop become

k2u I + Bss (u 1 -u2) + Bsaa + Kss (u 1 -8) + Ks, , (a- e) + ml'u 1 = 0

Kas (Ul-6) + Kcta(a-e) + Bets (u 1 -u 2) + Baa a + Ipa + k2Ulb 1 +

[Bss(Ul-U2) + Bsaa ]b2 = 0
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POS;T;ON PIN SECTION

I -

l s 6 r

RADIUS

13.370 IN.

"

Figure 3 Flexure-Mounted Shoe End Seal.
1. Shoe 2. Flexure Tab 3. Carrier 4. Coil Spring
6. Carrier 7. Test-Rig Adapter 8. Air Passage

5, Piston Rings

I

I

ct

BACK-UP __

SPRING

FLEX;h _1_\1 i

/
CENTROID

Fx_ RAME

V-

y BEAM Y2
;1 I SPRING

ROTOR FACE

HOOP

k2Ul I _ Bss(Ul - u2) ÷ Bsaa

I°I.-o21.

I K -t_)+ Ksa(a -_)_- ss (Ul

Kas(U i - _1 + K_ (a -_1

Figure 4 Geometry and Free-Body Diagram of the Flexure-Mounted Shoe Seal
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Let

m2"6 2 - Bss (U 1 -- U2) -- Bsaa

U 1 = Ula e i_t

u2 = u2 a e i _t

a = a a e i_t

and the motion of the rotor face be given by

e = e a e i_t

= 0

(1)

(2)

= _ e i_t
a

the equations of motion after substitution of Equations 1 and 2 can be put into the matrix
notation as

where

and,

A=

A

m

Ula

U2a

a a

= C_ + D ea (3)

Ul a

Ula b

U2a

U2a b

= 6a/b

Bss +. Kss

m 1

Bss

b
m 2

+ Bas + k2b I

t--

m 2

+ Bssb2) b

I
p

Bsa+ Ks a
b

m 1

b
B

sO,

m 2

Bas + Bss b2)b

I
p

Bat t+ Kaa+ Bsab 2

I
p

--b.) 2
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bKs____2

m 1

C = 0

b K=s

Ip

Ks___aa

m 1

D= 0

K,,o.

Ip

The value of w for which the determinant of the matrix "A" becomes zero represents a

natural frequency of this system. By calculating the determinant of "A" for a range of w,

and plotting these values against _, the natural f_requencies of the system can be determined.

Equation 3 can be inverted to obtain

U-I = [ (Uat_)_-a I "1-I (Ul_) e I

=1,u_,,_aI+I,u_,,oI ,4,
° : _°"_1 +I_°'''1

A computer program was written to calculate "the above six coefficients and determinant A

for various values of w. These coefficients can be used to determine the response according

to Equation 4.

The gas film's stiffnesses can be calculated from the basic gas-film performance data by using

a computer subroutine "KCAL", as described in Appendix A. The stiffnesses of the tab
spring can be derived from the formulas for the deflections of a beam fixed at two ends. Con-

sider a beam whose two ends are displaced axially from each other, as shown in Figure 5a.

Because of symmetry, the bending moment at the center vanishes and the beam can be re-
garded as being composed of two identical cantilever sections, as shown in Figure 5b.

10
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(o)

tP

(_)

Y

Figure 5 Beam Analogy for the Tab Spring

It follows that

2 3EI

P£

2

(5)

According to the definition,

P
Bs S = m

Y

M
(6)

Hence

12EI
Bs S - £3

6EI
B.s - _2

To determine Bsaand Bait, one may consider the tab as a beam with one end fixed and the
other end constrained to move in a horizontal plane containing the two ends as shown in
Figure 6.

Referring to Reference 1,

t_

P

M_

4EI

3M
m

2_
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Figure 6 Tab Load Diagram

M

Following the convention used in Figure 3,

Bs( 1 -

B_Q -

P 6EI

a £2

4EI

bt 3
where I = --

12

For a numerical example, consider a flexure-mounted shoe seal with dimensions as shown in

0.635

I'

Figure 7.

__2
0.220

T

k2= 1.76 LB/IN

0.690

 l_o9 I±
0.137

i_ 0.731.2

24 SHOES

WEIGHT OF EACH SHOE : 0.486 LB
LENGTH OF SHOE- 3.53 IN.

TOTAL CARRIER WEIGHT= 21 LB

A

m 2

J 1-. T-
t= 0.20 tN

Figure 7 Dimensions of the Flexure-Mounted Shoe Seal
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The masses of shoe and carrier are 0.00126 lb-sec 2/in. and 0.00226 lb-sec 2/in., respectively.

The polar moment of inertia of the shoe about its centroid is 0.000185 in-lb-sec 2 . The gas

film stiffnesses are given as:

Kss = 17,6001b/in 2

Ksa = 3,500 lb/rad-in

Kas = 2,048 in-lb/in 2

Kaa = 1711 in-lb/rad-in

The backup spring stiffness is given by

k 2 = 1.76 lb/in

and

b 1 = 0.137-0.30 = -0.163in

b 2 = 0.137 in

For the beam spring stiffnesses,

12EI 12x30x106 xl x(.02) 3
Bss - £3 12 x 1.23

= 138.5 lb/in

6EI

Bsa - £2 - --83.0 lb/rad

6EI

B_s - £2 83.0 in-lb/in

4EI

Ba a - £ = + 66.7in-lb/rad

The input data based on the above calculations can be listed as follows:

Analytical Symbol Computer Symbol Numerical Value Units

m 1 SM 1 0.00126

m 2 SM2 0.00226

Ip FIP 0.000185

b B 1.2

b I B1 -0.163

b 2 B2 O. 137

FL 3.53

lb-sec 2/in

lb-sec 2/in

in-lb-sec 2

in

in

in

in
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Kss CKSS 17,600 lb/in 2

Ksct CKSA 3500 lb/rad-in

Ka s CKAS 2048 in-lb/in 2

Kae t CKAA 1711 in-lb/rad-in

k 2 CK2 1.76 lb/in

6 DELTA 1.0 in

e EPSLON 1.0 radian

Bss BSS 138.5 lb/in

Bsa BSA -83.0 lb/rad

Bcts BAS -83.0 in-lb/in

Bat t BAA 66.7 in-lb/rad

N W(NW) 2000-18000 rpm

The results from the computer are expressed in terms of Ul_, U2t _ ; Ule ; etc. These are given
below and also plotted in Figures 8 to 10.

Z
N

Z
O

I---

..I

.4

O

_l

x

0.6

0.4

0.1

0.06

0.0,

0.0 ¸

\\

\-
\

2 4 6 8

\

\

10 12 14 16 18 20

ROTOR SPEED "_ RPM x 10-3

Figure 8 Axial Oscillation of the Hoop
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2.0

1.0

_1°,1

0.6

0.4

0°0,

0.04

0.01

/

i//
O.OOt

0.00,

0.002
0 2 4 6 8 10 12 14 16 18

ROTOR SPEED "." RPM x 10-3
20

Figure 9 Angular Oscillation of the Shoe
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Figure 10 Axial Oscillation of the Shoe
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If the seal shoe tracks the rotor surface exactly, and if the hoop is to be isolated from the shoe

oscillations, then the following ideal conditions must prevail:

U 1 = 6

U2 -- 0

To determine how closely the shoe tracks the rotor, it is most convenient to calculate

(u 1 - 6), (a - 5), and u 2. Perfect tracking demands that all three quantities be zero.

Now using Equations 4, one obtains:

ul-6 = (Ul,-1) 6 ] + lul_

u2 = u2, 61+ lu2,

-- a5 + I
If for the wobbling mode, the rotor oscillation is given to be

6 = 1.5x lO "3 inch

e = 0.5 x 10"3 radian

Then Figures 8 and 9 give the following coefficients at cruise:

N Ul(_ u2_ o.(_ Ull_ u2e

7100 1.0083 -0.125 0.003 0.000245 0.0635

Using Equations 6, one obtains at cruise

U1 -- 6 = 1.245 X 10"s inch

u 2 = 2.25 x 10 -4 inch

a - e = 7.25 x 10 -6 radian

For the saddle mode, the rotor oscillation is given to be

6 = 0.5 X 10 -3 inches

1.007

e = 0.3x10 "3rad.
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Figures 8 to 10 give the following coefficients at the cruise conditions:

2N u]d i u2di 0,_ u]e u21_

14,200 1.0568 -0.03 -0.0742 -0.0127 0.0157 1.08

Using Equations 6, one obtains at cruise

s
u 1 -8 = 3.29x10" inch

u 2 = 2.05 x 10"s inch

a--e = 5.48x l0 -s radian

Superimposing the saddle and wobbling motion, the minium gas-film thickness at cruise be-
comes

]bhmi n = ho--(Ul--_)wobble--(Ul--_)saddl e- --e)wobbl e + (a -- e)saddl e x_-

hmi n = 0.001 - 1.245 x 10 "s x 3.29 x 10 "s - (7.25 x 10 "6 +

5.48x 10"s)x0.6 = 0.0009185inch

The corresponding motion of the hoop at cruise becomes

(U2)cruise = 2.25 x 10"a + 2.05 x 10"s = 0.000245 inch

These figures indicate that at cruise, tracking will be satisfactory if the flexure-mounted shoe

seal is used in the end-seal position.

2. FLEXIBLE SEAL RING VIBRATION

The vibration of a flexible seal ring supported by a gas film will be analyzed in this section.

Two design concepts are under consideration, a thin-strip seal ring with OC diaphragm, and a

semirigid one-piece seal ring; they are respectively shown in Figures 11 and 12.

a. OC DIAPHRAGM SEAL

It is seen from Figure 1 1 that the seal ring is separated from the rotor by a gas film, and is

connected to the carrier by the OC diaphragm. Having a much higher rigidity than the seal

ring, the carrier can vibrate only in a rigid-body fashion. On the other hand, the seal ring can

vibrate both as an elastic ring and as a rigid body.
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FRAME

\\ \\\ \\ \\\ \ _\ \ \\\\ \\\

GAS FI L M "_...,_

Figure 11

,¢-

_"_ POSITIVE DIRECTIONOF ANGULAR TILT

I

OC Diaphragm Thin-Strip Seal Concept

GAS FILM \

FRAME

SEAL RING

ROTOR

Figure 12 Semirigid One-Piece Seal Concept

Consider the situation that the rotor surface facing the seal ring may be distorted so that it is

not perfectly flat. This can be classified into two categories: transverse (axial) distortion

(f = _nSn COS nO) and angular distortion (e = _nen cos nO). Since the rotor is rotating at

an angular speed of ¢o1, the deviation of the rotor surface from its perfectly flat position at
any particular instant of time can be represented by

f = b _ fin cosn (0 + cot) (7)

e = _e n cosn(0 + cot) (8)
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Similarly, assume that the seal ring has initial transverse and angular deformation.

r/ = b _ 1"/n COS nO (9)

_" = _'nC°Sn0 (10)

respectively. The sign convention for all angular deformations is given in Figure 11.

(1) Elastic Ring Vibrations

Let y be the instantaneous local deflection of the seal ring. Now, for the purpose of illustra-

tion, let us set, for the time being, e = _" = 0. Then the film thickness is given by

h = hm-Y+6

where h m is the nominal mean film thickness.

Note that y is the deflection from the perfectly flat position. Both y and _ are defined as

positive in the downward direction, as shown in Figure 13.

(9 = 0 SEAL RING INSTANTANEOUS 0 = 2_r

DEFLECTION CURVE

INITIAL DISTORTION
h h

m

, • --T i j

/

J
ROTOR CONTOUR

Figure 13 Rotor Contour, Seal-Ring Instantaneous Deflection, and Seal-Ring Initial
Distortion

The free-body diagram of a differential element of the seal ring is shown in Figure 14. The
forces and moments acting on this element are shear forces (V), the gas-film restoring force

(q), the bending moment (M b), the twisting moment (Mt), and the gas film's restoring moment

(qa). A double arrowhead denotes vector representation (right-hand system) of angular quan-
tities. The equations of motion can be written as follows:

PAGE NO. 20



PRATT 3( WHITNEY AIRCRAFT PWA-3302

v

Figure 14 Free-Body Diagram of a Seal-Ring Segment

Transverse motion (linear translation):

av

ao
-- -- dO --qRdO =(pARdO) 3)

Radial equilibrium of all moments:

aMb a_; l

d0--Mtd0--VRd0 = Irr a0 Ra0

Tangential equilibrium of all moments:

aM t
Mb de + dO --q, Rd0 = Itt

where

p = density of the seal ring

A = cross-sectional area (ab) of the seal ring

M = mass of the differential element = pARd0

(11)

(12)

(13)
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M(R2d02 + a 2) Ma 2
I = = _ (14)
rr 12 12

M(a 2 + b 2)

Itt = 12

q = restoring force per unit circumferentiallength

qa = restoring moment for unit circumferential length

Before we express q and qttin terms of displacement, let us define a set of spring constants for

the gas film. Kss, Ks, , , K a s and Kaa , and a set of spring constants for the OC diaphragm,

Kss* , Ksa *, Kas* and K tta *. Here, Kss is the y-direction restoring force per unit circum-
ferential length due to unit displacement in the y- direction, Ks, ' is the y-direction restoring

force per unit circumferential length due to a unit angular displacement in the a-direction,
and so on. The units are as follows:

Kss and Kss* (lb/in/in)

Ksa and Ks, , * (lb/rad/in)

K and K * (in.lb/in/in)
¢l,s as

Kct a and Kaa * (in.lb/rad/in)

When the seal ring is displaced from its perfectly fiat position by an amount y, the resulting

restoring forces from the gas film and the OC diaphragm are respectively KssY and Kss*Y.

In the meantime, let us assume that the rotor deviates from its perfectly flat position by an

amount 8 (in the same direction as y). This will decrease the gas film restoring force KssY

by Kss 8. A similar argument can be applied to the angular displacement. ThUl_, we can write

q = Kss(Y-_i) + Kss*Y + Ks_(a-e) + Kaa*a

(15)

qa = Kas(Y-8) + Kas*Y + Kaa(a-e) + K.a*a

At this stage of the analysis, it appears proper to obtain relationships between Mb , Mt, and

the displacements y and a. Again, take a differential element of the seal ring with length

Rd0. Because of angular (twisting) displacement a, the upper portion is compressed, while

the lower portion is stretched (see Figure 15). At an arbitrary location z, the stretched

length of the element is (R + z a)dO. Hence, deformation = zadO

zadO za

e a = strain due toa - RdO R
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T
II

z R

Mb

Figure 15 Bending of a Seal Segment Because of Angular Displacement ot

We also know that strain due to transverse bending is

z

eb - ff strain due to transverse bending

_ =fd_ )-,where P -- radius of curvature _ R-_02

Thus,

e = total strain = e e+ eb

z R2 _-_ ]

The bending moment is readily obtained

M b I ( g" ra/2

a/2 1 d 2 y

= -- -a/2Eezbdz= E R2 d02 _)J-/2

= EI 2 d0 2

where E = Young's Modulus

I = area of moment of inertia __. a/2= z 2 bdz
"a/2

z2 bdz (16)
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As for the twisting moment, we have the well-known formula:

at_

Mt = GI
P RO0

for a bar under torsion.

In the case of a circular ring, there is an additional term in the twisting moment. Consider

a segment under torsion. The segment has linear displacement y and angular displacement a.

It is convenient to use cylindrical coordinates r, 0, and z as shown in Figure 16. The shear

stresses contributing towards the twisting moment are r 0 r = 2Ge
Or (17)

rOz = 2Ge0z

Also, the strain displacement relationships are (Reference 2, page 183).

1 [ aUr au0

eor = 2- r_ + _-r

eoz = 2-_raO + az ]

u°)r

(18)

where u r, u 0 and u z are the displacements in the respective direction. From Figure 16, it is
clear that:

U r = ¢/,Z

ay

u0 - Ra0 z

u z = y -- ar

Thus, from Equation 18,

l(aa lay)eor = 2 - r--'_ + -r _0 z

= 1 (_0 __ aa ay )e 0z 2 r ra0 Ra0

Substituting into Equations 17, we have
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0
a p

a

d c

a. CYLINDRICAL COORDINATES

'! a/J-".._4 1_

"1o T Ir "°
y a T_z

b. SHEAR STRESSES ON A DIFFERENTIAL
ELEMENT dA

Figure 16 Seal-Ring Segment
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aafor = G ra---O

= G lay
_'ez r_)0

+ z
r RaO

a_ _o)
ay

_ - ff r_O

The twisting moment can be obtained by integrating the moments resulting from the shear
stresses.

Mt = -- Afr0z f- dA + fA "/'Or Z dA

= _

ai(_r_ _ lay)
G + -- -- z2dA

r raO

Observe that from geometry,

VdA +

r = R+V

For the seal ring application, R is much greater than V. Therefore, we can make the approx-
imation that

1 1

r R+V ,
R(l + _)

Thus, the twisting moment is readily obtained,

/_ ( R) ay 1 ( f" )aa ay ] f__ dAM t : --G I-- _ f- _ 1 R _0 RBO

fA [1 ( g-) aa 1 ( F) By ] Z 2+c 1- E _ + E 1-E _ dA

Using the condition that

V dA = /f-a dA = 0
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we obtain

Mt = G

where

3y f f-2 dA
R230

+ G--

+G-- 3a f z2dA + G
R30 4

R230 R30
(F 2

3y 3a )
--+

Glp R 230 R-_O

f2F dA
R30

R 2 30 z 2 dA

+ z 2 )dA
(19)

Ip = the polar moment of inertia

£
= I(F -2 + z 2 )dA

l

The same expression for M t is given in (Reference 3, page 451 ). It is important to note that

when a rectangular cross section (thin-strip seal ring) or a hollow cross section (semirigid one-

piece ring) is under consideration, Ip should be replaced by its equivalent polar moment of
inertia calculated from the membrane analogy for a bar under torsion (see Reference 4).

Thus, for a thin strip seal ring (Reference 4, page 15)

I
l - ba 3
P 3

To summarize, the bending moment and the twisting moment are given by Equations 16 and

19 respectively. If the initial transverse and angular deformations of the ring, _ and _', are

taken into account, then the bending and twisting moments are

1 d2 (y-_) a--__]M b = El ]_2 d02 R (20)

M t = GI 3(y-_) +
p R230 _-_ j (21)

We now proceed to simplify the equations of motion (i i, i2, and 13), and express them in

terms of y and a and their derivatives. Differentiating Equation 12 with respect to 0,
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02 Mb 0Mt aV pAa =a 2_,
R

002 00 30 12002

R

Multiplying both sides of Equation 11 by dO '

OV
-- R -- -- qR 2 = pAR 2 _'

00

Subtracting Equation 23 from Equation 22,

02 Mb OMt pAa 2 0 2

+ qR 2 -
302 30 12 002

-- pAR 2

Since

02 ;
302

Therefore

pAa 2 _2 _,

12 _)02 a 2

pAR2_ R z
41

where _ denotes "of the order of".

a
For seal ring applications, a is much smaller than R, so that -- "_ I. Thus. Equation 24 re-
duces to R

02 Mb aM t

002 00
+ qR 2 + pAR2_) = 0

Substituting Equations 14, 20, and 21 into the above equation, we have

El c)4(y-r/) c32(a--_) -- GI +

L RO02 p R2002 Ra02

+ R2 [(K * + K )y + (Ksa+K a*)a] + pAR2_

R 2 (K 6 + K o e)

21and substituting Equations 15, _0, and into Equation 7, we have

(22)

(23)

(24)

(25)

PAGe-NO. 9.8



PRATT & WHITNEY AIRCRAFT PWA-3302

Equations 25 and 26 become

a2a a4u a2u

302 F 1 a F 9 304 F10 302

1 32u
__ _ F2u

f] 2 3t 2

32_ " 3417 32_7

= -- F 3 e- F 4 _- + r 9 +302 _ Pl0 302

(29)

32a 1 32a 32u
+ _ __ 1-'6U

302 F 5 a f22 3t 2 Fll 30 z

6 32_" 32r/

= -- r 7 e-r 8 b + -- -- _ + rl302 1 302

Differential operators D] through D 4 are defined as follows:

a 2

D 1 - 302 F1

34 32 1 32

D2 = -- F9-_ + Pl0 302 F2 fl 2 3t 2

32 1 32

D3 = 30---S-- P5 f22 3t 2

32

D4 = Pll 302 F6

Then we can write Equations 29 and 30 in the form,

a2_ ,- 34,1_

Dla + D2u = --F 3 e--F 4 _- + _02 F9 304 Plo

and

/i 32_" 32r/
D3a + D4u = -- F7 e-- r 8 _- + --302 - _" + rll _02

Apply D 4 on Equation 31 and D 2 on Equation 32 and subtract:

(30)

(32)
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L R-_-('::"-_) +--_- R--_ +

--R [(K .+K,,,o.*),,.+(K,,s+_,,s.)y_ K __ K,,s,_]
1

12 pAR(a2 +b2)&

Defining the following dimensionless quantities:

Y
U = --

b

EI
=

GI
P

[`1 =

1" 2 =

['3 --

1"4 =

(Ks,, , + Ksa*)R3

EI + GI
P

(Kss + Kss* ) bR 3

El + GI
P

K R 3
sll

EI + GI
P

Kss bR 3

El + GIp

[`7 -

[`8 =

[`9 =

I_10 =

K R 2
o,a.

GI
P

Kit s bR 2

GI
P

b

RI+_

b 1

RI+_

[`5 = _d

(Ka,,+ Ktta*) R 2

GI
P

['6 =

(Kas + Kas*) b R 2

GI
P

b

P]l = R (l + _)

and two typical frequencies

f]

f_

] 1/2

El + GIp

pAbR a

pAR 2 (a 2 + b 2)

1/2

(26)

(27)

(28)
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(D1D 4 --D2D 3) a

-- D, -r3,-r 4_- + _ + -r 9_-_ + r,0 _

--D2 -I'7 e-r8 b + _ _" +/)0 2 V11 aO 2

Similarly, apply D 3 on Equation 31 and D 1 on Equation 32 and subtract,

(D 1D 4 -- D 2 D 3 ) u

= D1 --P7 e--FSb- + bO2 /J _'+P11

--D3 --P3 e--P4 _- + _ + --r 9 _ + Plo "_ n

(33)

(34)

Thus, we have obtained Equation 33 for a and Equation 34 for u. The right-hand sides of

Equations 31 and 32 are the respective forcing functions for a-motion and u-motion. Note

that in the left-hand sides of Equations 33 and 34 the differential operators are identical.

This is because they are the results of solving coupled linear systems.

(2) Natural frequencies of flexible seal ring vibrations

To find the natural frequencies, we solve the homogeneous system

(D1D4--D2D3)a = 0

O£

(D 1 D 4 -- D 2 D 3) u = 0

Either equation will, of course, yield the same natural frequencies.

(35)

Expanding the differential operator in Equation 35 we obtain

1 a 4 + [ _1 ( a2f12f22 at 4 f12 _02 1 ( a 4 _2 2)] _2r_ + --f22 --r9 _-_ + rlo _2 r

a6P + (['11 --rsr9 )+ ['9 _06 -- rio
"1 I

--(I" 1 I' 6 --P 2 F5) [ [ O, = 0

J J

(_4 _2

_--_-+ (r 2-I"6 +r 5 rlo--l" 1 1Pll) a02

(36)
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1 34

Because of the cross-differentiation terms in Equation 36, e.g. fl 2 302 at 2 ' the method of

separation of variables cannot be applied in general. However, since we are dealing with a

ring geometry, the displacements must be continuous and periodic in 0. This strongly suggests

that the 0 dependence is of the form of e in0 . Thus, assume that

a = e in0 T(t), n = 1, 2, 3 ... (37)

Substituting Equation 37 into Equation 36 yields

[ ]d Td4Tdt'---T-+ f22 ( n 2 +F5) + fl2 (1-9 n 4 +Flo n 2 +1-,2) dt 2

-- f12f22 [--F 9 n 6 +(Fll --Plo -- FsF9) n4 --(P 2 --F 6 + FsFIo --FIFI1 )n2.
L "l

/ T = 0+ (FI 1-'6 --F2F5)

For natural frequency calculations assume

(Y8)

T = C eiut

where C is an arbitrary constant, and v, a frequency.

Then Equation 38 becomes

v4 -PI v2 +f12f22P2 = 0 (39)

where

Pl =

P2 =

f2 2 (n 2 +1"5) + fl = (P9 n4 +Flo n2 +F 2)

F9n6 -- (F11 -- PlO -- P5 F9 ) n4

+ (P2 -- F6 + F5 PlO -- Pl F11 ) n2 -- (Pl F6 -- P2 P5 )

(40)

Equation 39 is the characteristic equation. The number n = 1,2, 3 .... represents different
modes of vibration. For a given n, Equation 39 has two positive roots. Let them be denoted

by vn 1 and vn 2" They are given by

1 1 1/2 ] 1/2//'nl = 2Pl +y(Pl 2 --4 f12f22P2 ) (41)

[1 1 1/2] 1/2V,2 = 2- PI--_-(PI 2-4f12f22P2 ) (42)

where Vnl and Iln2 are the two natural frequencies at mode n.
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(3) Dynamic Response
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As indicated before, the right-hand sides of Equations 33 and 34 are the forcing functions.

They consist of influences from the angular and transverse displacements of the rotor surface,

e and 6, and the angular and the transverse displacement of the seal ring, _"and 7/. Let us re-

write Equations 7 through 10.

8 = b _; _5n cosn (0 + _ot) (7a)

e = _ en cos n (0 + cot) (8a)

r/ = b _ _/n COS n 0 (9a)

_" = _] _n cos n 0 (10a)

Thus, it is clear that _ and e give rise to dynamic forces, and 7/and _', to static (time-independent)
forces.

Based on the above, we can assume that the dynamic response, a, and u, can be expressed in
the form,

a = _ [anCOSn(O+cot)+(3nCOSnO ] (43)

u = _ [UnCOSn(O+cot)+v. cosnO ] (44)

Here, a n and u n are the response to 6 and e. Let the seal ring have initial deformation, 7/and
_'. Then, through the action of the gas film, the seal ring will reach a static equilibrium position

which is indicated by/3 n and v.

Substituting Equations 7a, 8a, 9a, 10a, 39, and 40 into Equation 33, we obtain

{ [' ]1 n4co4 + h (n z + Fs ) (F9n4+Plo n2+F/)
fl 2f2 2 fl 2 f2 2

(--n 2 O,9 2 )

--1-'9n6 +(I'll --F10 --FsF9)n4 --(F2 --['6 +FsFlo --Pll-'ll )n2 +FLU6

--P2P5 I anCOSn(O+cot) + {--r9n6 +(Fll --Flo--PsP9)n4--(Fz--F 6

+I'5Fl°--FIFll)n2 +l"lF6--1-'2F5 I /3n cosn0 -- {(l-'3Q 1 +l-'7Q2)e n

+ (P4Q1 + FsQ2) _in } cos n (0 + cot)

+ I'10n2)Q1 + n2I'llQ20 ] r/n } cos n0

-- {[n2Q1 +(n2 +_)Q20 ] _'n +[(1-'9n4

= 0
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where

Q1 = F11 n2 + P6

n2co 2

Q2 =-F9n4--rlO n2 --['2 + 2
fl

Q20 = F9 n4-1"10 n2-F2

Since cos nO and cos n(0 + cot) are two independent functions, their coefficients must be

equal to zero separately.

where

An an = (F3Q1 + FTQ2) en +(F4QI + FsQ2) fin (45)

+ (n2 + _) Q20 ] _n + [(r9 n4 + rio n2 ) Q1 + n2 rl 1Q20 ] 'on (46)-P23 n = [n2Q1

n 4 _4 n1 C02

A - fl 2 f22 + PI -- P2n fl 2f22

P1 and P2 are dei-med in Equation 40.

Similarly, from Equation 34 we obtain

(I"7Q3 + I"3Q4) en + (F8Q3 + 1"4Q4) gn

where

m u =
n n

-- P2 Vn

(47)

(48)

= [(n2 +_')Q3 +n2Q4o ] _'n + [n2 I"llQ3 +(F9n4 +Flon2)Q4o] 'On (49)

Q3 = n2 + FI

Q4 = - n2 -I'5
f2 2

Q4o = - n2 - 1'5

We can rewrite Equations 45, 46, 48, and 49 in the form of influence coefficients,

PAGe NO. 84
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U n = Cule n +Cu2_ n

v = Cvl_"n + Cv2r/n

CA1' CA 2' etc. are the influence coefficients.

CA1

1-'3 Q1 + 1"7 Q2

A
n

CA2

P4Q1 + F8Q 2

A
n

CB 1

n2Q1 + (n2 + _) Q20

-P2

CB2

(F9 n4 + Plon2)Ql + n 2 FllQ20

--P2

F7 Q3 + 1"3 Q4

Cul = A
n

F8Q 3 + 1-'4Q 4
Cu2 =

A
n

(n2 + _) Q3 + n2 Q40

Cv I ---

--P2

n2FllQ3 + (1"9n4 +F10n2)Q40

Cv2

--P2

They are defined as follows:

(51)

It is to be noted that different modes of vibratory response can be calculated separately. For

example, for n = 1, we can calculate a I ,/31 etc, for n = 2 we can calculate a 2/32, etc.

Then the total response will be a = a I + a 2 ...,/3 = /_1 + _2 "'" etc.

These computations have been included in the computer program discussed in Appendix A.

(4) Rigid-Body Vibrations

In the last section, the vibration of a flexible seal ring was considered. There, the carrier was

unable to vibrate as an elastic body, and was assumed to be fixed in space.
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Now let us consider the rigid-body vibration of the carrier and the seal ring. It can be visualized

that the carrier-ring system can have two linear degrees of freedom x I and x 2 , and two angular

degrees of freedom ')'1 and "Y2"Because of axial symmetry, the other two angular degrees of

freedom withaxes of rotation perpendicular to those of 3,1 and 3,2 need not be considered, as

they would yield identical results.

(5) Rectilinear Vibrations

The lumped-parameter model of the carrier-ring system is shown in Figure 17.

FRAME

_I x2

F r
CARRIER RING

M 1 M 2

x 3

_TOR

Figure 17 Lumped-Parameter Model of the Carrier-Ring System

The displacements of the carrier and the ring are represented by x 1 and x2, while the motion

of the rotor is prescribed by x 3. This system was considered in Reference 5, and an explicit
solution was obtained in page V-5, Reference I. Results are summarized as follows:

The natural frequency is given by the roots of the characteristic equation,

v4-A Iv 2 + A 2 = 0 (52)

where

A 1

K 1 + K2 K 2 + K3
= +

m i m 2 (53)

A 2

KIK 2 + K2K 3 + K3K 1

mlm 2

Thus

A t + _2 .__4A2 ] 1/2
l) i ---- (54)

,: [A'-V:'2 A2]''2
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The motions of the carder and the ring, x 1 and X2, expressed relative to the rotor imposed

motion, x 3 , are obtained as:

x 1 K2 K3

m 1 602 + K 1 + K
i_m2 co2 + + K22 l

K 2 K 3
---m 1to 2 + K 1 + Kd

(55)

X 2 K 3

x3 K22
--m 2co 2 + K 2 +K 3- _

ITI I (.02 + K1 + K2

(56)

where w is the frequency of the imposed motion X 3 .

Equations 55 and 56 represent the response of the undamped vibration. They would become

very large as co approaches v I or _2"

Although the natural frequencies v 1 and vz can be easily calculated from Equation 54, let us
obtain a simplified expression from which we will be able to predict how to increase (or de-

crease) the natural frequency by varying certain parameters.

In seal ring application, it is known that the gas film is much stiffer than the OC diaphragm,

which is much stiffer than the carrier spring. Thus,

K 3 >_ K 2 >_ K 1
(57)

Also, we have

ml > m2 (58)

Therefore, from Equation 53

K 3

A 1 _
m 2

K2K3

A 2 _- mira2

(59)

Observe that

/A 2 -- 4A z ----
1 m2

K2K3 1 1/24_

m 1 m 2 J
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m2 '--4 (60)

We have used the binomial expansion and the condition that

K 2 m 2
"_1

K 3 ml

Using Equations 59 and 60, the natural frequencies given by Equation 54 are reduced to

I K ] 1/21)1 = __
m 2

V2 = --
• m 1

(61)

Thus, we see that under the conditions of Equations 57 and 58, the system is decoupled into

two subsystems, namely, the seal ring supported by the gas film, and the carrier supported by

the OC diaphragm. In the numerical example, it will be shown that since the gas film is very

stiff, v I is much higher than the rotating speed of the rotor. The lower mode v2 , however, is

quite close to the idling speed (based on an estimated m I = 30 pounds and K 2 = 17100 lb/

in). Efforts should be made according to Equation 61 to vary either m 1 or K 2 (or both) so

that v2 is sufficiently different from the speed range of the rotor. For actual calculation of
the natural frequencies, the exact expressions of Equation 54 should be used.

(6) Angular Vibration

The two angular degrees of freedom are described by 71 and _'2 as shown in Figure 18.

axes of _'1 and )'2 are perpendicular to the paper.

with half amplitude C3. Then

')'3 = C 3 cos cot

where co = rotational speed of rotor

The equations of motion are

II'_l +K3q71 + K_2 (')'1--')'2 ) = 0

I2_2 + K_2 (72 --71) + K_3 ')'2 = K'y373
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R sin 0"

FRAME

CAR

SEAL RING

GAS FILM

J _

ROTOR

12

1

Ky1

K
y2

K¥3

Figure 18 Schematic for Mathematical Model of Angular Vibration

1
-- R 2 = moment of inertia of the carrierwhere I -- m1 2 1

1

and 12 = _- m 2 R 2 = moment of inertia of the seal ring

To obtain the spring constant K3,3, consider the restoring moment of the gas film due to a
rind body rotation %

(64)
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Moment from Kss

2T

(3' R sin0') (KssRd0') R sin0'
o

fo 21rR 3 Kss 3, sin 20'dO'

71"R 3 Kss3'

2T

Moment from Kaa =f (3' sin0') (KaaR dO') sin0'
o

271"

= R K..a3" f sin20'd0 '
o

= 7r R Kaa3"

There is no contribution from Ksa and K=s. Thus,

Restoring Moment = (_rR 3 Kss

The spring constant is by definition:

Restoring Moment
K3,3 =

3'

+ lrR K=. a) 3"

= rrR3Kss + lrRKaa

Similarly,

But, because

we obtain

K3,2 = 7rR 3 Kss* + lrR Kaa*

R2Kss >> K,.,.

and R2Kss * >>K,.a*

K_,3 = lrR 3 Kss

K.y2 = _rR 3 Kss*

Equations 62 and 63 can be solved by assuming that

3"1 = CI COSwt

3"2 = C2 cos eat

(65)
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Using the same procedure in solving the rectilinear vibration, it is found that the natural

frequency will satisfy

v4 -- B l v2 + B2 = 0 (66)

where B]
Ky_ + K3, 2 K.y2 + K3,3

- +

I 1 12

B 2

K_q K3,2 + K.),2 K3, 3 + K3,3 K_, 1

Iii 2

and the dynamic responses of the Carrier and seal ring with respect to unit rotor input can be

respectively expressed by

C 1 Ky2 K73
-- = (67)

--I1_2 +Ky I +K3, 2 --126o2 +Ky 2 +K3, 3- |leo 2 +K_, 1 +K_, 2

C 3

C 2 K,v3

C3 Kv 2 z

--12602 +K,y2 +K-.r3-- _11602 +K,vl +Ky 2

(68)

From Equation 64 and 65 we can write

B 1

It is easily identified that

_'R 3 (Kss + Kss*)

1
--m R 2
2 1

21rR (Kss + Kss*)

m 1

2_'R K's_ = Kl

2_'R Kss* = K 2

2_'R Kss = K 3

•/rR 3 (Kss* + Kss)
+

1

m2 R 2

2rrR (Kss* + Kss)
+

m 2
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Hence,

K 1 + K 2 K 2 + K 3
B1 - + - A l

m 1 m2

Similarly,

K1K 2 +K2K 3 +K3K 1
B2 = = A 2

mira 2

Thus, Equations 52 and 66 are identical.
are the same as those of the rectilinear vibration. Utilizing the identities

K.I¢ "/rR 3 Kss*

1 R_ c° 2
-- I16°2 + K71 + K3'2 2 ml + 7rR3Kss

The natural frequencies of the angular vibration

+ 7rR 3 K*
ss

2rrR K *
SS

-- m I co z + 27rR F'ss + 2_rR Kss*

K 2

_mlro2 +KI +K2 , etc.

We can easily see that the dynamic response C1/C 3 and C2/C 3 as given by Equations 67 and

68 reduce to Equations 55 and 56 respectively.

Thus, the rigid-body vibrations of the carrier-ring system can be predicted by considering
either the rectilinear vibration or the angular vibration, because they are completely analogous

to each other. The flexible seal tracking analysis computer program discussed in Appendix A

includes calculations of the natural frequencies and the dynamic response.

b. SEMIRIGID SEAL RING

The analysis and computer program for vibration of the thin-strip seal ring in the OC diaphragm

seal are quite general. They can be easily applied to the semirigid seal ring's vibration if the

following quantities are properly identified: Kss*, Ksa*, Ko.s*, Kaa*, I, Ip, A and Itt.

The seal ring is again supported by a gas film on one side, but on the other side there is no

OC diaphragm. A mechanical spring is used instead to hold the ring down. Let the spring

constant of this spring be K 1, then

K 1

Kss* _ 27rR

Ks.,* = Ka.s* = Kaa* = 0
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Consider the case that the cross section of the ring is a rectangular hollow section with uni-

form thickness. Then, the moment of inertia and the equivalent polar moment of inertia
are

1

I = 12 (blal3 b2a32)

4_, 2 t
I -
p

where

a 1 , b 1

a 2 , b 2

t

= outer dimension of rectangular ring

= inner dimension of rectangular ring

= thickness (uniform)

= linear length = 2a 1 + 2b I -- 4t

A = area = (a 1 --t)(b 1 --t)

See Reference 4, page 27.

Let

A 1 = a_ b 1

A 2 = a 2 b 2

M 1 = pA l Rd0

M 2 = pA:Rd0

= mass of an element with area A l and thickness Rd0

= mass of an element with area A 2 and thickness Rd0

Then, from Equation 14,

Ml(al 2 + bl 2) M2(a2 2 + b2 2)

and

Itt = 12 12

m net area = alb I --a2b 2
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c. GAS FILM CROSS-COUPLING STIFFNESS EVALUATION

(I) Derivation of Angular and Cross-Coupling Stiffness for Single Pad Configuration

In studying the tracking capability of the seal ring with respect to the rotor face distortions,

it is convenient to approximate the behavior of the air film by two direct stiffnesses, Kss,

K aa and two cross-coupling stiffnesses, K s,,, Kas. Referring to a typical single pad seal as
shown in Figure 19, these stiffnesses may be mathematically defined as follows:

8W
K =

ss 8h

= K_s b (lb/in)/in

M

W

Figure 19 Typical Single-Pad Seal
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where W is the upward restoring force per unit circumferential length, h
m

ness, Kss the axial stiffness per unit sealing area, and b the seal width. K
tabulated performance data. ss

the mean film thick-

can be found in the

M
m

Kaa a

a[W(x c -x*)]

aW aXc
= -- -- + W _ in-lb/in/rad(% x*) aa aa

M is the counterclockwise restoring moment about the centroid of the cross section per unit

circumferential length, a the clockwise tilting angle, x c the coordinate of the center of pres-
sure, and x* the centroid coordinate.

Similarly

0W

Ksa = aa lb/in/rad

OM I awKas - Oh - _"  Xc](xc -x*) + W a--h--

_X

= K' b (x c -- x*) -- W _ (in-lb/in)/in
ss ah

W = Kss(--Ah) + KsttAa

M = Kas(--Ah) + KaaAa

In calculating the derivatives, one may make the following approximations.

aW Wl a=aa-W]a=-aa

aa 2Aa

_X
C

8a

xc la.=aa-- Xc la=_,aa

2Aa

t -xl(}X c Xc h=h o + Ah c h=ho _ Ah

ah 2Ah

The equations derived above are for direct use in the tracking analyses of the single-pad semi-
rigid seal configuration.
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(2) Derivation of Angular and Cross-Coupling Stiffness for Double Pad Configurations

For the double pad, the expression of the film stiffnesses is more complex than for the single

pad.

Referring to Figure 20,

8W

Kss = 3h

( + C
= Va-U/ ,k Tg-/
= (Ks's) 1 b] + (Kss) 2 b 2 (lb/in)/in

and

aW axc

K =a-_ %-x*)+w _-

W2 (b--x2) + WlXl _W _Wl _W2
where x = _ and -- = --- + ---

c W l + W 2 8a aa aa

Figure 20 Gas-Film Forces on a Double Pad
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Similarly, the cross-coupling coefficients are defined by

aW

Ksa aa.

axc 1

--aM i_W

K,,s; o-if----- _- (xc-_*) + w _]
ax c

= [(G), t-,,+ ,,K/s)_b_] (xo-x*)-w a-T

where

(w:-w,-) W2 -- W2-

(b--x2 +)+W1 + xl +]
Wl + + W 2-

aXc l

ah 2Ah w (b2-x 2)+w lxl]
W 1 + W 2 h:ho

and

1

2Ah (b 2 --x 2) + W 1 xl 1W 1 + W 2

Ct= Act

Aa,

h 2 =h---_(b 3 +b 2)

h=h o

W2 + = W 2

W2- = W 2
a = Aa

A(z

h 2 =h+--_- (b 3 +b 2)

Wl + = W 1 O.= Act

&a

h I =h+-_-- (b 3 +b l)

W1- = W 1 a,= ACt

&a
h I :h--- T- (b 3 + b 1)

+ Ah

+ Ah

(b - x2-) + W 1- X 1 "

Wl- + W 2-
]
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X2 + = X2

X 2 = X 2

a = Aa

h 2 =h---

a = Aa

h2=h +

Aa

2 (b3 + b2)

Aa

2 (b3 + b2 )

+

X 1 = X 1
a = Aa

Aa
hl=h + 2 (b 3 + b 1 )

x 1 = x 1 a = Aa

Aa

h 1 =h--_ (b 3 +b 1)

Since the calculation of these stiffnesses for the double pad from the basic performance data
is quite involved, hand computation is not feasible and a computer subroutine has been pre-

pared. This subroutine is used in conjunction with the tracking computer program and re-
quires the basic primary seal data described in Appendix A.
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region at the concave side of the upper diaphragm spring. The air passes through the seal gap

to the vent recess and proceeds through the gap between the springs to holes drilled in the
carrier. The holes vent directly to the low-pressure area.

The lower seal pad is fed through radial holes in the carrier and the O-diaphragm air pocket

formed by the lower diaphragm spring. Air enters the individual pads through 154 feed holes

1/ 16 of an inch in diameter, and is distributed over the Rayleigh recess by means of a 1/ 16

wide and 0.030 inch deep groove located at the leading edge of the recess.

Secondary sealing between the carrier and the stationary support structure is accomplished
through the use of a piston ring. The design details of the piston ring are the same as those

of the one-sided floated-shoe seal discussed in Reference 6, page 23. The piston ring's outer
surface includes a step bearing configuration which helps to establish an air film between
piston ring and seal support.

2. SEAL CONSTRUCTION

The OC diaphragm end seal consists of a seal ring supported on O- and C-diaphragm springs.
The springs are welded on one side to the seal ring and on the other to the carrier.

The carrier in turn is preloaded by virtue of 24 helical coil preload springs which rest on

riveted spring guides on the carrier and seal support. The carrier is centered and held in

place by four antirotation pins similar to the ones employed in the one-sided floated-shoe

design (Reference 6, page 7). The seal support separates the high-pressure from the low-

pressure chamber and provides the secondary sealing surface for the piston ring to ride on.

The O-and C-diaphragm springs are of toroidal and semitoroidal cross section. These springs
are to be fabricated or formed from 0.006-inch stock and welded into separate subassemblies

with the use of spring supports for the O- and C-spring sections, respectively. The subassem-

blies are then electron-beam welded onto the seal ring and carrier. To avoid prestressing and

distortion of the spring diaphragms, and to contain the diaphragm subassemblies prior to
final welding onto the seal ring and carrier, the spring assemblies are rabbeted onto the seal

ring with light clearance fits.

The seal face is hard coated with aluminum oxide (Linde LC-1C) or Chrome Carbide (Linde

LW-5), whichever is more suitable for the etching and/or machining of the spiral groove and

Rayleigh recess profiles. The major seal parts are made of Inconel X750.

3. OC DIAPHRAGM STATIC SEAL PERFORMANCE AT CRUISE,

IDLE, AND TAKE-OFF

a. STATIC PERFORMANCE CURVES

The static seal performance curves for the double-pad OC diaphragm end seal are shown in

Figures 21 through 23. The arbitrarily arrived at limits based upon the cruise static perfor-

mance curves appear to apply also to the take-off and idle conditions: in order not to fall

below 70 percent of the design film thickness, the tilt angle should be restricted to 0.0007

radians for positive and 0.0004 radians for negative tilt.
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C. OC DIAPHRAGM THIN-STRIP SEAL

The final configuration of the OC diaphragm end seal is shown in Figure 1. Both the end

and interstage configurations of the OC diaphragm seal are similar in design and materials.

Because the OC diaphragm interstage seal will not be investigated under Task II, the discussion

below is directed primarily toward the end seal configuration. With minor exceptions, how-

ever, it also applies to the interstage seal.

1. PRINCIPLE OF OPERATION

The OC diaphragm end seal shown in Figure 1 is a flexibly supported, flexible ring seal

operating on the principle of the controlled seal gap. The gap control is achieved through the

incorporation of gas bearing profiles in the seal face which are designed to yield gaps or air

films between the stationary seal rings and runner.

The end and interstage seals have been designed for operation at steady-state cruise, idle, and

take-off conditions as simulated on a Pratt & Whitney Aircraft test rig. Air-film thickness is

a function of speed, air temperature, and air pressure. Thus, at standstill, the seal is in direct
contact with the runner and the film thickness is zero. The film thickness develops as the

engine reaches the design operating conditions. In order to secure safe starts and stops, the

seal ring and runner faces are hardcoated. The hard coats are selected on the basis of their

compatibility of operation up to 1400 degrees Fahrenheit, mutual material compatibility,
and resistance to wear.

As shown in Figure 1, the seal ring surface is divided into two bearing lands, the two lands

being separated by a recessed vent groove. The outer land, henceforth referred to as the
upper pad, serves the function of a bearing-seal combination. This pad is designed to main-

tain a small air film to separate the high from the low air-pressure areas, providing at the

same time sufficient stiffness for proper seal operation at dynamic conditions. The upper

pad consists of a hybrid combination of a spiral groove pattern and inherently compen-
sated orifices. The spiral groove pattern provides hydrodynamic lift-off capability at con-

ditions when the compressor discharge pressure is low, as at idle, start-up, and shutdown. :

The inherently compensated orifices enhance the rquired stiffness characteristics during

operation.

The inner land, (or the lower pad) serves as a bearing. This pad includes Rayleigh shrouded-

step recesses, the function of which is to strengthen the film-generating performance char-

acteristics of the seal. It provides, in combination with the upper pad, the high angular

stiffness which is a prerequisite to proper operation of a flexible seal ring and early liftoff

capabilities.

The high-pressure areas, as shown in Figure 1, are located on the outside of the seal's outer

surface and within the O-diaphragm spring. The low-pressure areas are on the seal's inner

surface and on the inner surface and right side of the carrier.

During operation, the upper pad is fed with high-pressure air through the air gap at its outer

edge and through the line of 360 orifices connecting the air-film gap to the high-pressure
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Because of the flexibility of the OC diaphragm seal, the chances are very good that the seal
ring will follow conical runner distortion, as can be seen from the following comparison of the

seal-ring and air-film angular stiffnesses. The bending stiffness of the ring can be calculated,

assuming that the ring tilts as a solid body, from

El

r R 2

where

bh 3
I - - 0.211 (10 -3 )in 4

12

E = 23 X 10 6 psi

R = 13.5 in

K* = seal ring bending stiffness =
r

27.0 in-lb/radian

The restoring moments of the gas film are much higher than those required to overcome the

seal ring's internal resistance to bending. The seal ring also can be subjected to tilt in another

way, through the application of residual moments. These moments arise as result of changes
in operating conditions, dimensional seal variations due to manufacturing tolerances, and
thermal deformation. The effects of the residual moments are discussed below.

b. RESIDUAL MOMENTS DUE TO CHANGE IN OPERATING CONDITIONS

The residual moments resulting from change in operating conditions have been previously

calculated in Reference 7. Neglecting the seal ring's resistance to tilt, the seal ring will tilt

until the imposed residual moment is balanced by a restoring moment created by the tilt

angle a. Hence, knowing the residual bending moments, angle a can be directly determined
from Figure 22. The tilt angles obtained are high in particular at take-off for the end stage

seal. A significant reduction in tilt angle can be achieved through slight increase of the gas-
force moment-arm between the lower pad and the centroid from 0.474 inch to 0.494 inch.

The resulting residual moments are shown in Table I.

TABLE I

ADJUSTED RESIDUAL MOMENTS IN THE

OC DIAPHRAGM END SEAL

M
res O.

lb-in/in Milliradians

Cruise 0.40 0.2

Idle 0.236 0.38

Take-Off -0.70 -0.32
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The adjustment in the moment arm produces a residual moment on the seal at cruise and

slightly increases the residual moment at idle. The residual moments at take-off, however,

are reduced from -1.35 in-lb/in, to -0.70 in-lb/in. As a result of these changes, the tilt

angles all fall within the specified range of 0.0007 to -0.0004 milliradian.

c. RESIDUAL MOMENTS DUE TO DRAWING TOLERANCES

The most critical tolerances in terms of their contribution to the residual moment change are

the tolerances of the spring diameters (A, B, and C in Figure 24) and their respective con-

centricities. Based on these tolerances, the residual moment change for all applicable oper-

ating conditions can be calculated as shown in the following sample calculation for the end
seal at cruise.

(1) Sample Calculation for C-Diaphragm at Cruise

Ap = 80 psi

Tolerance on diameter "C" is +-0.004 inch, therefore, radial distance X 1 in Figure 24 can
vary by -+0.002 inch.

t
X 1

X 2

DIA. D

X 3

DIA. Y

,_l--0.2SO +- 0.002

DIA. B

DIA. A -- 0.004

X 3 = 0.494

Figure 24 Critical Tolerances in the OC Diaphragm End Seal
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Tolerance on eccentricity of diameter "C" with respect to diameter "Y" is + 0.004 inch.

This permits an additional change in distance x 1 by + 0.002 inch.

Based on the above tolerances, the total increase or decrease in x I is 0.004 inch.

The net gas-force change is thus

Frl = Ap Ax I = + 80 (0.004) = -+0.320 lb/in.

The moment arm of the Ap Axe, gas force is 0.175 • 0.002 inch.

It should be noted that when the gas force decreases (Axl is negative), the moment arm in-

creases by one half the magnitude of the decrease in Ax_

In the case of cruise and idle conditions we are only interested in the positive residual moments

developed, inasmuch as the residual moments at cruise and idle are positive, and the positive
moments due to tolerance changes will be directly additive to yield the worst possible case.

At take-off where the residual moments due to change in operating conditions are negative,

the problem is not so severe. The total moment change at cruise is thus

in-lb

Mc = Fr_ x 2 = +0.320(0.175 + 0.002) = 0.056 in

(2) Sample Calculation for O-Diaphragm At Cruise

Tolerance on Diameter A in Figure 24 is +0.004 inch and moment arm x a due to this toler-
ance will vary by +0.002 inch.

Tolerance on dimension x 4 over which Ap acts is +0.002. This will affect gas force Fr2

since Fr2 = ApAx 4. This tolerance also effects x 3 by +0.001 inch.

To obtain a positive residual moment at cruise,

Fr2 = ApAx 4

= 80 (0.002) = 0.161b/in.

The moment arm x 3 , adding 0.002 inches of possible eccentricity effect is

x 3 = 0.494 + 0.002 + 0.001 + 0.002

= 0.499 inch

The net moment at cruise due to "O" diaphragm tolerance is thus

in-lb

M° = Fr2 x 3 = 0.16(0.499) = 0.08 in
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and the total moment on the seal due to the combined tolerance effect M = M + M
OC 0 C

0.14.

The residual moment values calculated for all specified conditions are given below.

Cruise 0.14

Idle 0.02

Take-Off -0.25

d. RESIDUAL MOMENTS DUE TO THERMAL EFFECTS

Due to lack of thermal data at off-design conditions, the over-all effects of residual moments

due to thermal gradients cannot be calculated at this time. The major contribution to the
residual moments from thermal effects is expected to come from the thermal gradients ex-

isting in the seal support O- and C-diaphragm springs and temperature differences between

the diaphragm springs and seal ring. (See Appendix C)

e. COMBINED RESIDUAL MOMENTS

The residual moments due to change in operating conditions, as well as the moments due to

drawing tolerances can now be added to yield the worst possible residual moment combin-
ations. The combined residual moments are listed in Table II.

TABLE II

COMBINED RESIDUAL MOMENTS FOR THE OC DIAPHRAGM END SEAL

Mres Tilt Angle

(in-lb/in) (milliradians)

f.

Cruise 0.564 0.32

Idle 0.263 0.40

Take-Off - 1.01 -0.40

EFFECT OF RESIDUAL BENDING MOMENTS ON FILM THICKNESS

The effect of residual bending moments on film thickness during operation can be found us-

ing the data obtained from Table II to find the minimum film thickness from the static per-

formance characteristics shown in Figure 21. The values of minimum film thickness h rain

and mean film thickness h m are given in Table III. These values will be later used to adjust
the results of the tracking analysis to account for the residual moment effects. Note, that

the values given here are conservative, inasmuch as the internal seal ring resistance to tilt is
assumed to be zero.
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TABLE III

MEAN AND MINIMUM FILM THICKNESSES RESULTING FROM RESIDUAL

MOMENTS IN THE OC DIAPHRAGM END SEAL

hRmi n hRm 17.

(inxl0 3) (inx 10 3) (radx 10 3)

Cruise 0.84 1.386 0.32

Idle 0.68 0.94 0.40

Take-Off 0.55 0.81 -0.40

g. EFFECT OF SEAL RING TILT ON SEAL LEAKAGE

Seal leakages have been calculated and tabulated in Reference 7 for all operating conditions

at parallel film thicknesses. Having established the maximum residual moments expected

during operation and the resulting tilt angles (see Table III), the effect of the seal ring

angular tilt on leakage can now be determined from Figure 23.

The net results are shown in Table IV where values of parallel film thickness leakage rates

are compared to tilted seal ring leakage rates. The results indicate only slight increases in

leakage at cruise and idle. The only appreciable increase in leakage due to tilt (about 25 per-

cent) occurs at the take-off condition. Considering the fact that the calculated tilt angles

represent conservative estimates of the expected maximum, the increase in leakage shown at

this condition represents also a highly conservative estimate.

TABLE IV

TILTED- AND PARALLEL-FILM MAXIMUM SEAL LEAKAGE

IN THE OC DIAPHRAGM END SEAL

Parallel Film Tilted Film Tilt Angle a

(lb/sec) (lb/sec) (rad)

Cruise 0.113 0.116 0.00032

Idle 0.024 0.022 0.00040

Take-Off 0.390 0.490 0.00040

h. OC DIAPHRAGM SEAL DYNAMIC PERFORMANCE

(1) Tracking Analysis

The tracking analysis employed to investigate the dynamic seal performance characteristics

is described in detail in Section IB of this report. In the course of evaluation of seal tracking

performance, the seal is subjected to three runner input modes. In the n = 0 mode, no
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axial runner input deflection exists but the seal ring (or the runner) is tilted by an angle _n'
the seal tilt angle being uniform all around the circumference. This condition is represent-

ative of the state in which the seal or runner is initially coned or is subjected to thermal tilt

or coning. The gas film characteristics required for the input, such as Kttct, Ks=, K,, s and

Kss have been calculated based on a seal tilt angle of 0.0004 radian.

In the n = 1 mode the runner exhibits an 0.003-inch full indicator runout resulting in a

+-0.0015-inch wobble once per revolution.

In the n = 2 mode, the runner is distorted in a saddle shape, exhibiting two high and two

low spots symetrically spaced, the maximum deformation being 0.001 inch from planar.

At this condition, the runner deformation occurs at a frequency equal to twice the runner

frequency of rotation.

The n = 0, n = 1 and n --- 2 modes of distortions are graphically shown in Figure 25.

The tracking results based upon the seal distortions discussed above are given in Table V. In

this table, n, _n, hm'Sn' and en are inputs into the computer program. The minimum film
thickness for each mode of distortion is calculated from the following relationships estab-

lished in Section IB.

t_n = CAI en + CA2 _n

/_n = CBI _'n + CB2 rtn

+ 8nU n = Cul e n Cu2

v = Cvl _'. + C. 2r/_

where en is the seal to rotor angle as shown in Figure 25, 8 n = 8/b (5 being the axial
rotor displacement shown in Figure 25), and b the radial width of the seal face. The "C's"
are influence coefficients calculated through the use of the computer program. These are

listed in Table VI for all operating conditions.

The minimum film thickness is calculated using the following relationships

hmin = hm b2 len --an--/_n I -- bl--Sn + un + v I

The results indicate that at most conditions, with the given input distortions, the seal would

still operate at reasonably safe minimum film thicknesses even if all distortions were to fall

in phase in such a manner that the film thickness loss (h m --hmi n) resulting from each mode

of distortion would be directly additive yielding the combined hmi n shown in Table V.
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Figure 25 Modes of Seal and Runner Distortion Used in Tracking Analysis
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TABLE VI

INFLUENCE COEFFICIENTS FOR THE OC DIAPHRAGM END SEAL

Mode
Number Cruise Idle Takeoff

CA 1

CA 2

CBI

CB 2

Cui

C2

C
vl

Cv 2

0 0.920 0.9411 0.935

1 0.9043 0.9237 0.9180

2 0.8580 0.8752 0.8696

0 0.0983 0.0603 0.0625
1 0.0839 0.0549 0.0534

2 0.0431 0.0397 0.0271

0 0.0141 0.0131 0.0136

I 0.0320 0.0313 0.0320

2 0.0818 0.0822 0.0832

0 0.0000 0.0000 0.0000
1 0.0031 0.0030 0.0031

2 0.0114 0.0113 0.0115

0 0.0111 0.0055 0.0104

1 0.0133 0.0066 0.0131

2 0.0196 0.0098 0.0206

0 0.9576 0.9171 0.9715

1 0.9625 0.9196 0.9745

2 0.9769 0.9267 0.9834

0 -0.0020 -0.0012 -0.0022

1 -0.0043 -0.0024 0.0050

2 -0.0109 -0.0057 0.0129

0 0.0000 0.0000 0.0000

1 -0.0004 -0.0002 0.0005

2 -0.0015 -0.0006 0.0017
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(2) Natural Frequencies

The OC diaphragm seal system yields four natural frequencies. Two of these, resulting from
the seal-ring vibration analysis, are

P= + -- --tPl211n 1 2 _ 4f12 f2 2 p2)1/2 1 1/2

un2 = PI 2 (P12 _ 4f 1 2 f2 2 P2 2)1/21

1/2

For details, the reader is referred to Section lB. The calculated values of Vn_ and Un2 fall
far beyond the operating speed range, imposing no problems directly related to the design.

The other two natural frequencies, v_ and v2, result from the behavior of the entire system

in terms of rigid body vibrations. As previously discussed, u_ and v2 can be closely approx-
imated using the following relationships:

K31 1/2121 = --

m 2

where

K 3 = gas film stiffness (lb/in)

K 2 = spring diaphragm stiffness (lb/in)

m 2 = seal ring mass (lb-sec 2/in)

m I = carrier mass (lb-sec 2/in)

As has been shown in Section IB, _ is far beyond the operating speed range and thus also

imposes no particular problem on the design: v2 , however, depends upon the selected OC
spring geometry and carrier mass. Consequently, the ratio of K 2/m I , due to practical de-

sign limitations, had to be carefully selected so that the resulting critical speed (u2 ) fell above

the operating speed of 8000 rpm.

_.._u_._t ....are listedThe final values of natural frequencies for all operathag points under .... :A..n :..

in Table VII with the corresponding operating frequencies (%).
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TABLE VII

NATURAL FREQUENCIES OF THE OC DIAPHRAGM END SEAL

IN RAD/SEC

Mode
Number l)n 1 Pn 2 I) 1 1)2 1)O

Cruise

0 46,789 11,337 13,123 1,273 760

1 47,069 11,370 13,123 1,273 760

2 47,899 11,466 13,123 1,273 760

Idle

0 46,728 8,220 7,983 1,240 1,273

1 47,145 8,223 7,983 1,240 1,273

2 48,372 8,232 7,983 1,240 1,273

Takeoff

0 54,152 13,746 16,319 1,280 1,280

1 54,465 13,792 16,319 1,280 1,280

2 55,393 13,925 16,319 1,280 1,280

Examining the values of the lowest

approximate operating frequencies

that the lowest natural frequencies

natural frequency (v 2 ) and comparing these to the

(v o) at each condition, the conclusion may be drawn
of the system fall safely above the operating frequencies.

(3) Carrier and Seal Ring Rigid Body Response

In the analysis of rigid body vibrations discussed in Section IB, the dynamic rigid body re-

sponses of the carrier and the seal ring with respect to the unit runner input, are expressed

by C l/C 3, C2/C 3 respectively. From Table VIII, the relative motions of seal diaphragm and
carrier can be found. The carrier response Cl/C 3 indicates that the carrier motion at cruise
will be highest and approximately equal to 1.5 times the runner input displacement. Due to

the damping action of the torque pins, a good percentage of the indicated gain will probably

be damped out. The seal diaphragm follows the input motion almost perfectly as indicated

by the C2/C 3 ratios of close to 1.0.

TABLE VIII

CARRIER AND SEAL RING RIGID-BODY RESPONSE RATIOS

CI/C 3 C2/C 3

Cruise 1.57 1.02

Idle 1.12 1.01

Takeoff 1.42 1.01
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i. COMBINED STATIC AND DYNAMIC SEAL PERFORMANCE

The results of the tracking analysis discussed above show that the gas film possesses sufficient

restoring moment capabilities to counteract initial seal ring deformation within reasonable

limits of seal ring tilt angle when the deformations are not produced by residual moments.

When residual moments are present, the seal ring (neglecting its internal resistance to tilt) will

tilt to the point where a restoring moment of equal and opposite magnitude is developed by
the gas film. The effects of seal ring tilt due to residual moments are not considered in the

trackLng analysis aside from the fact that the gas film characteristics are calculated at ex-

pected tilt angles.

To take into account the residual moment contribution to the minimum film thickness dur-

ing operation, the difference between parallel film thickness h (listed in Table V) for all

running condition's, and minimum film thickness hRmin (listed in Table III) resulting from the

residual bending moment, is subtracted from the minimum film thickness hTmin (listed in
Table V) obtained in the tracking analysis, or

hTmin -- (h m- hRmin) = hFmin

where hFmin is the final combined minimum film thickness. This approach is conservative,
since it assumes that all deformations act in phase and are thus directly additive. It also

assumes no internal resistance of the ring and a worst-tolerance stackup. The values calculated

using this procedure are shown in Table IX.

TABLE IX

FINAL MINIMUM FILM THICKNESS OF THE OC DIAPHRAGM

END SEAL DURING OPERATION

hm hRmin h Tmin hFmin

Conditions (in x 10 3) (in x 10 3) (in x 10 3) (in x 10 3)

Cruise 1.00 0.84 0.84 0.68

Idle 0.85 0.68 0.63 0.46

Takeoff 0.85 0.55 0.74 0.44

The addition of the residual moment effects obviously lowers the operational film thickness.

The final values, with the exception of one condition, indicate less than 50 percent film loss

for the worst cases considered. OC diaphragm end seal performance should thus be satis-

factory over almost the entire range of conditions.

4. OC DIAPHRAGM SEAL THERMAL ANALYSIS

Thermal maps showing the temperature distribution of the seal's cross section and the immediate

surrounding areas have been computed at cruise conditions. The detailed analytical procedure

and results are given in Appendix C.

PAGENO. 65



PRATT&WH,TNEVA,_CRAFT PWA-3302

The results for the end seal are slightly different from those reported in Reference 7. The

differences are mainly due to the assumption of reduced air temperature at the-low pressure

side. According to the latest thermal analysis, this temperature is expected to be 1136 de-

grees Fahrenheit instead of the originally assumed 1200 degrees Fahrenheit.

In summary, the end seal temperature distribution yields reasonably low temperature

gradients. Although the thermal gradients in the seal section will produce a seal face defor-

mation with a slope of -0.0027 in/in, this will be entirely offset by counteracting pressure

forces.

5. OC DIAPHRAGM END SEAL ORIFICE PRESSURE DROP CALCULATIONS

The analysis of the OC diaphragm end seal assumes that no pressure drop occurs at the lower

pad orifices which admit pressurized air to the Rayleigh shrouded pads and that no pressure

drop occurs at the vent holes incorporated in the seal ring and carrier. To ensure that these

pressure drops are minimized in the actual design, the number of orifices and orifice diameters

must be kept as large as physically possible within the design limits.

a. PRESSURE DROP THROUGH RAYLEIGH PAD FEED HOLES

The maximum possible Rayleigh shrouded step feed orifice diameter is 0.062 inch. Since

there are 77 pads in the end seal, there are also 77 feed orifices present. The air flow through

the lower pad at cruise is 0.084 lb/sec.

m4" T
G =

P2 ffa2 Cdng (69)

where

G

P2

R

T

a

Ca

n

g

m

= dimensionless flow

= supply pressure = 100 psia

= gas constant = 2.47 (10 s) in 2/sec 2 -- OR

= supply temperature = 1660°F

= orifice radius = 0.01325 in

= coefficient of discharge = 0.8

= number of orifices = 77

= gravitational constant = 386 in/sec 2

= flow = 0.0841b/sec
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Therefore, for the end seal cruise condition, G = 0.233.

From Figure 12, Reference 8, for G -- 0.233, = 0.92

PWA-3302

P2

- 0.96

P]

The pressure drop across the Rayleigh pad feed holes is thus only 4 percent of the supply

pressure and should not appreciably affect seal performance. At take-off, the lower pad flow

is increased, but due to an increase in supply pressure and a decrease in temperature, the
pressure ratio across the orifice will remain essentially the same as at cruise.

b. PRESSURE DROP THROUGH VENT HOLES

The pressure drop through the vent holes is calculated in a similar manner. The following
specific values apply:

P2 = 20 psia n = 154

a = 0.0625inch m = 0.0171b/sec

All other values are the same as those used in the Rayleigh pad feeder hole calculations. Sub-

stituting in Equation 69, G = 0.123 and P2/P1 = 0.98, which is low enough to be consider-
ed negligible. Again, at take-off, in spite of the increased flow, no appreciable increase in

pressure ratio is expected due to compensating temperature effects. Nevertheless, in the

final detailed layouts the vent hole sizes should be increased to the maximum possible to
avoid pressure buildups.

6. PRELOAD HELICAL COIL SPRINGS

To save on design and manufacturing expense, the helical coil springs used in the OC diaphragm

can be exactly the same as those used in the one-side floated-shoe design.

The spring specifications are as follows:

Wire size (inches)

Coil outside diameter (inches)
Spring rate at 70°F

Solid height (inches)

Free heights (inches)
Total number of coils

First load

Second load

End Condition

0.035 +0.008 dia

0.445 Reference

1.942 lb/in Reference
0.601 to 0.671

1.870 Reference

18 Reference

0 lb, 7 oz to 0 lb 9 oz at 1.612 inches length

1 lb 12 ox to 2 lb 0 oz at 0.904 inches length
Close ends and grind square to within 2°

The spring rate variations according to the above specifications are plotted in Figure 26.

For the end seal, the nominal spring length is 1.130 inches. At this length the load can vary
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between 1.54 and 1.32 pounds. For 24 springs, the total spring load variation is thus 37.0

to 31.7 pounds. Using a mean seal diameter of 27.050 inches, the variation in terms of

spring load per inch of circumference is 0.437 lb/in to 0.373 lb/in. Similarly, at the mini-

mum working length (nominal length less 0.2 inches) the load variation in pounds per inch

of circumference is 0.553 to 0.482 lb/in, and at the maximum working length (nominal

length plus 0.2 inches) the load can vary between 0.333 and 0.277 lb/in. The over-all spring

load variation (taking into account the change in the spring's working length because of

differential thermal expansion of test parts and spring tolerances) is 0.277 to 0.553 lb/in.

In the original seal balance calculations, a constant spring load of 0.5 lb/in, was assumed to
be acting on the seal at all conditions. Due to the fact that the spring load is not constant,

what remains now to be established is the effect of spring load variation on film thickness

and residual moments, and the minimum spring load sufficient to overcome friction at the

antirotation pins.

a° EFFECTS OF SPRING LOAD VARIATION ON FILM THICKNESS AND RESIDUAL

MOMENTS

To be conservative, let us assume that the entire spring load variation can occur at end

idle conditions (the worst conditions), where the over-all pressure loading is lowest. The

change from 0.5 lb/in assumed load to 0.553 b/in maximum possible load will have negligible
effects. Considering now the minimum possible spring load, the loss in seal face loading is

0.5 - 0.227 = 0.223 lb/in. The total load at the interstage seal is 20.0 lb/in, (Table V,

Ref. 7) thus the load loss of 0.223 lb/in represents a decrease of about 1 percent which is

still within the over-all design accuracy and should not appreciably effect the operating seal
clearance.

To determine residual moment effects, the simplified OC diaphragm seal model shown in

Figure 27 can be used.

$1

FS2

t
0.175

0.494

FSI -" 1/3 (0.223) - 0.0743 LB/IN

FS2 --2/3 (0.223) --0.148 LB/IN

Figure 27 Simplified Diagram of the OC Diaphragm Seal
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Summing up the spring moments about the centroid

-0.148 (-0.494) + 0.0743 (0.175) = 0.060 in.lb./in.

This moment is extremely low, and in any event will subtract from the original residual

moment in all cases (with exception of end seal take-off) thus actually reducing the tilt

angle (a). Based upon the above calculations, it can be concluded that the effects of spring

length and spring gradient variations on seal performance are negligible.

b. MINIMUM SPRING LOAD REQUIREMENTS TO OVERCOME FRICTION

Let us assume conservatively that only the spring load acts on the seal in the axial direction
at cruise. From Reference 7, the power loss generated by the OC diaphragm end seal at

cruise is 6.3 horsepower. At a_ = 757 rad/sec,

(550) (6.3) (12)
Torque = = 55 in/lb

(757)

The frictional force to be overcome by the spring is

Ff = coefficient of friction x
Torque

Radius

Assuming a coefficient of friction of 0.5 and a radius of 14.5 inches,

55
= _ 2.0 poundsFf 0.5 14.5

The minimum available spring force from Figure 26 is 0.98 lb/in, so that for 24 springs the

total spring force is approximately 23.5 pounds, which is an order of magnitude higher than

the frictional force to be overcome. The helical coil springs as specified can thus be used

safely in the seal designs.

7. CARRIER BALANCE

The force and moment diagram for the OC diaphragm carrier cross section is shown in

Figure 28. The carrier is designed so that the net resultant moment about the centroid of the

cross section is small and bending stiffness high, thus minimizing carrier rotation. Further-

more, to make sure that the OC diaphragm springs remain slightly compressed during oper-

ation, the carrier is balanced to yield an additional 0.5 lb/in of pressure loading at cruise.

This load acts in the same direction as the spring load. The forces acting on the carrier are:

F s Helical coil spring load = 0.5 lb/in

Fs_ C-diaphragm spring reaction
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Furthermore,

Fs2 O-diaphragm spring reaction

F 2 C-diaphragm radial pressure load -- .2z_p

F3 O-diaphragm pressure load -- 0.25 Ap

F° Carrier axial pressure load = Yl _P

F v Carrier radial pressure load = 1.255 Ap

Fsl = 0.167 + 2.09 (10 "a) z_p

Fs2 = 0.333 + 4.18(10 "3) Ap

Fsl

t
0.513

F2

O.156 0.25

I-I
" FI |_

S

I I

.(_1 Fy

J

C
l .806-----_

1.273

_1 0.385 0.302

Figure 28 Force and Moment Diagram for the OC Diaphragm Seal Carrier
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The left-hand terms of Fs_ and Fs2 are the reactions to the helical coil spring load and the
tight-hand terms are reactions to the cartier imbalance of 0.5 lb/in at cruise.

For balance, EF = 0

Fsl + Fs2 + F 3 -- F °

Substituting the given values in the above equation

0.167 + 2.09 (10 -3 ) Ap +

or

--F = 0
s

0.333 + 4.18(10-3)Ap + 0.25 Ap-y_Ap -- 0.5 = 0

0.256Ap--y_ Ap = 0

Yl = 0.256 inch

For EFy = 0, the only loads acting on the carrier is Fy and F 2 . The internal ring
reaction to these loads will, assuming no ring distortion, pass through the centroid of

the ring's cross section, and thus is of little interest in the moment balance when
moments are taken around the centroid. The centroid coordinates x* and y* for the

given cross section are calculated using the moment area method to be x* = .449 inch

and y* = .302 inch.

Note that Mx 4: 0, but equals MR, the residual carrier moment. Referring to Figure 28,

MR = .513 Fs] -1.273 F s + .178 Fy -.385 F o -.156 F 3 -.156 Fs2 -.449 F2

- .0035 Ap -.6027

Pressure differentials corresponding to the end seal design conditions can now be easily sub-

stituted and carrier residual moments obtained. These moments are given in Table X.

TABLE X

BALANCE RESULTS FOR THE OC DIAPHRAGM END SEAL

I = .165 in 2

R = 13.0 in

Residual Modulus Angle of

Carrier Moment of Elasticity Carrier Rotation
AP MR E 0

(psi) (in-lb/in) (psi) (rad x 103)

Cruise 80 - .883 24

Idle 13 - .648 30

Take-Off 150 -1.128 28

.038

.022

.041
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Themomentof inertiaaroundthecentroidal"y" axisiscalculatedto be0.1251in4, from
Reference1.

MRR2
0 -

El

Where 0 is the angle of carrier rotation, E is the modulus of elasticity, I is the moment of

inertia around the centroidal "y" axis, R is the mean carrier ring radius, and M R is the
residual carrier moment. Assuming a carrier radius of 13 inches, the values of 0 listed in

Table X were obtained for all design conditions. The angular carrier rotation, in all cases,
is of small magnitude.

F'A_E No. 73



PRATT• WHITNEYAmCRAFT PWA-3302

D. SEMIRIGID INTERSTAGE SEAL DESIGN

The final Task I design for the semirigid interstage seal is shown in Figure 2. Because the

semirigid end seal will not be evaluated in Task II, the following discussion will be con-

centrated on the semirigid interstage seal. As was the case with the OC diaphragm seal,

there are only minor differences between the end and interstage configurations of the semi-

rigid seal design.

1. PRINCIPLE OF OPERATION

The semirigid seal, although differing in other major respects, operates on the same basic

principle as the OC diaphragm seal, inasmuch as in this case too, the principle of clearance

controlled leakage is applied.

Primary sealing is accomplished at the seal face, which consists of a single land. This land

has a spiral-groove inherently compensated orifice profile, and acts as a bearing and seal

combination. The angular stiffness of a single land bearing is very low. As a result, the seal

ring must be rigid enough to absorb residual bending moments without appreciable deforma-

tion of the seal face. To accomplish this, substantial seal-ring length is required. Moreover,
the' seal ring must also serve as a housing for the piston ring required for secondary sealing,

one of the secondary seals being formed by contact between the side of the piston ring and

the seal ring. It should be noted that the combination of seal length and piston ring contact

is conducive to the generation of high thermal gradients. Thermal gradients in turn cause

the seal surface to deform and through this deformation may seriously affect seal perform-

ance. In order to minimize the extent of thermal gradients and seal deformations the follow-

ing steps have been taken:

The seal material was selected to provide high thermal conductivity in

combination with a low coefficient of thermal expansion.

The piston ring was insulated through the inclusion of a thermal barrier in

the form of a radially annular slot.

The seal's cross section was designed to minimize thermal distortions through

the addition of a relatively constant temperature ring on the seal's outer

edge close to the seal face.

The seal's tracking performance characteristics indicate tolerance to some

degree of distortion. Since slight distortion may be beneficial, the seal is

designed so that sufficient distortion occurs, the net result of which is an

increase in film clearance at high pressure ratios, reduction in heat generation

at the seal face, and an increase in leakage flow. The increased air flow also

carries more heat away from the seal face, leaving less heat to be dissipated

by the seal, and therefore lower thermal gradients.
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The seal ring is preloaded with 24 helical coil springs to ensure contact at start and permit

development of separating air films at relatively low speeds. The seal face and runner coating

materials were also selected with regard to compatibility at high temperature and resistance

to wear. They are identical to the ones used in the OC diaphragm seal.

2. SEAL CONSTRUCTION

The semirigid seal is a one-piece design. The seal basically consists of a ring composed of

front and rear sections welded together to form a thermal barrier. The rear section of the

ring includes 24 tabs for piston-ring retention and for spring-guide mounting. This same

section includes also four protruding slotted tabs for engagement of the antirotation pins.

The antirotation pins are the same as those used in the OC diaphragm seal. The front por-

tion of the seal includes the primary seal face and 360 orifices feeding in directly from the

high pressure cavity.

Calculations of force and moment balancing for the piston ring are not discussed in this

volume, since they were previously described in Reference 6, page 23. The piston ring is of

the same cross-sectional design as the OC diaphragm piston ring, but in this case the ring

rides on the seal's inner edge. This change required a modification of the piston-ring spring

design. The piston ring rides on the seal support which connects through the support case

to the test housing.

The seal ring is made of Duranickel 301, a material of substantial high-temperature strength

combined with good thermal conductivity and relatively low thermal expansion. The seal

face is coated with aluminum oxide or chrome carbide, for the same considerations of pro-

file manufacturability mentioned in the OC diaphragm seal description. The seal supports
are made of Inconel X750.

3. MODIFICATION OF CROSS-SECTION

The semirigid seal cross section arrived at in Reference 7 and shown in Figure 29 exhibits

one basic drawback: the axial thermal gradients at cruise are high enough to cause end seal

distortions of 0.003 radians in the end seal application and higher in the interstage seal.

(See page 49, Ref. 7) The axial thermal gradients result from heat flow originating at the

seal interface and from heat flow due to radial temperature differences between the high-

and low-pressure test-rig areas.

The axial heat flow is enhanced by the fact that the seal and piston ring are in intimate

metal-to-metal contact, providing an excellent conductive path down to the seal support,

which extends through the low-temperature area to the housing walls. Thus, in order to

reduce the effectiveness of this built-in heat sink, the piston ring has to be isolated from the

seal ring. Since contact between piston ring and seal walls is absolutely necessary to main-

tain good sealing, it becomes advisable to introduce a thermal barrier in the seal proper,

close to the piston ring, leaving the back of the ring against which the piston ring rests

unaltered. This can be accomplished through the introduction of a radial cut out.

PAGENO 75



PRATTa,WH,'rNEVA,RCRAFT PVA-3302

x*= 0.1039 IN. = CENTROIDAL °'X" COORDINATE

y*= 0.404 IN. = CENTROIDAL "Y" COORDINATE

(_)= LOCATION OF CENTROID

Figure 29 Cross Section of the Semirigid One-Piece Seal

The air in this cut out is relatively stagnant and thus acts as a fairly good insulator. In order

to maintain seal rigidity and to prevent the gas loading applied by the piston ring onto the

seal wall from deflecting it excessively, the ring is welded at 180 points around the inside
circumference.

The introduction of the thermal barrier cut out necessitates rebalancing the cross section

through minor dimensional adjustments so that the location of the centroid is not ap-

preciably altered. This is important since the magnitude of the residual bending moments is

dependent upon the force moment arm to the centroid. The final adjusted, configuration is

shown in Figure 30. It forms the basis for the final seal design.
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I" 0.414 _ 0.15
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0.10
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0.050 0.20

0.25

t

I 0.060

x* = 0.1056 IN. = CENTROIDAL "X" COORDINATE

y* = 0.403 IN. = CENTR01DAL "Y" COORDINATE

(_ = LOCATION OF CENTROID

Figure 30 Cross Section of the Semirigid One-Piece Seal with Insulating Cut Out

4. SEAL BENDING STIFFNESS

The bending stiffness of the seal can now be calculated from:

M EI
K* -

r 0 R 2

where E = 23 x 106 psi, I = 0.0255 in 4, R = 13.5 in.

then,

in-lb
K* = 3218

rad
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This represents only a slight reduction in stiffness over the 3820 in-lb/rad, of the original

"E" configuration discussed in Reference 7.

5. STATIC SEAL PERFORMANCE

a. RESIDUAL MOMENTS

The seal modifications described in the previous section have slightly altered the seal shape,

but the air-pressure forces acting on the modified seal remain essentially the same as on the

original cross-section. Consequently, neither the seal's air-film forces nor centers of pres-

sure have been changed. The change in seal shape, however, brings about a slight change in

centroid location and bending stiffness of the seal ring, resulting in a change in residual

moments and tilt angle. These changes are tabulated in Table XI together with the magni-

tudes of all forces, centers of pressure and minimum film thickness. Examining the new re-

suits, the seal ring's tilt at all operating conditions still remains negligible. In all cases the

small tilt angles are negative and acting in the direction of tilt opposite to that imposed by

thermal gradients. This will slightly alleviate the negative effects of thermal seal rotation.

b. GENERAL PERFORMANCE CHARACTERISTICS

The static seal performance characteristics at cruise conditions for the end and interstage
seals are discussed in detail in Reference 7. The basic performance curves at cruise are here

supplemented with the performance characteristics at idle and take-off conditions. These

curves are presented in Figures 31 through 36.

In general terms the comments made in the discussion of the end seal in Reference 7 also

apply to the interstage seal. Due, however, to the lower pressure differentials existing at the

interstage seal the latter's characteristics are more sensitive to tilt.

(1) Minimum Film Thickness

At take-off conditions (Figure 35), the pressure differentials are still sufficiently high to
produce a slight increase in minimum film thickness at positive tilt angles. At cruise condi-

tions (Figure 31), the minimum film thickness begins to decrease with positive tilt. The

rate of decrease, however, is still low in comparison to that at negative tilt. At idle condi-

tions (Figure 33), where the pressure differential is down to 2 psi, the rate of decrease in
minimum film thickness at positive tilt angles exceeds the rate at negative tilt. Obviously,

tilt angles of 0.002 radians cannot be tolerated at these conditions. Neither, however, are

such high tilt angles to be expected to be present merely due to the fact that at idle the

over-all ambient temperature and heat generation at the seal interface drastically decrease.

(2) Air-Film Stiffness

The film stiffnesses, Kss, of the interstage seal are generally lower than the stiffness of the
end seal at corresponding conditions, mainly due to the reduced hydrostatic effects. As

will be shown in the tracking analyses, the stiffnesses are still sufficient to maintain suffi-

ciently large air films during operation.
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Figure 36 Leakage and Stiffness of the Semirigid Interstage Seal at Take-Off
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(3) Leakage Flow

As shown in Figure 32, the leakage flow at cruise actually decreases at positive tilt angles.

At take-off (Figure 36), the flow slightly increases as a function of tilt angle, but the over-all

leakage magnitude is still of the order of 0.07 lb/sec, at 0.003 radians. At idle (Figure 34),

the decrease in leakage at positive tilt is very pronounced, although at these conditions the

over-all leakage magnitude is extremely low and has no bearing upon the seal-design require-
ments.

(4) Static Performance

Summarizing, the static seal performance of the semirigid configuration is quite satisfactory
over a range of positive tilt angles of 0 to 0.003 radians at cruise and take-off conditions.

At idle (in particular for the interstage seal) the tilt angle tolerance is severely affected, but

tilt due to thermal gradients at these conditions is expected to be low during actual opera-
tion due to low speed and low ambient temperature levels.

6. TEMPERATURE DISTRIBUTION AND DISTORTIONS IN THE
SEMIRIGID INTERSTAGE SEAL

a. THERMAL GRADIENTS

The interstage seal is more prone to the development of axial thermal gradients than the end

stage seal because of lower film thickness and larger seal diameters, which contribute to

higher heat generation; and lower pressure differentials, resulting in low leakage flow, and

hence less heat carried away by the air. Because of these reasons, the thermal analysis per-
formed on the interstage seal was formulated with more attention to detail than that for the

end seal. Thus, the number of nodes was increased, and the effect of orifice air supply pass-
ages, and turbulence in the outer diameter 0.060 inch recess region at the entrance to the

seal face, normally neglected in the end stage analysis, were included in the analysis of the
interstage seal.

The nodal point distribution with adjacent subvolumes is shown in Figure 40 together with

the surface coefficient values at the seal boundaries. The final temperature distribution ob-

tained is shown in Figure 38. All thermal calculations are summarized in Appendix D.

Although, as expected, the over-all temperature levels are higher than those obtained on the

end seal, the actual thermal gradients contributing to seal ring tilt are not appreciably
different.

b. THERMAL DISTORTIONS

As previously indicated, the semirigid seal is sensitive to distortion-producing thermal

gradients. This sensitivity is vividly demonstrated by the differences in the thermal distor-

tions obtained on the end and interstage seals.
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The end seal thermal analysis was based upon laminar conditions existing in the originally

assumed 0.020-inch clearance between the upper portion of the seal ring and the runner. In

the interstage thermal analysis, the calculated turbulent heat generation in the increased

(0.060-inch) gap was included. The effect of this turbulence is important, inasmuch as it

raises the temperature difference between the average upper seal ring addition and the lower

main ring. This fact negates some of the restraining action of the upper seal ring on over-all

ring tilt resulting from the axial thermal gradients.

The calculations of thermal deformation of the semirigid interstage seal are given in Appendix

F. The results indicate a seal face tilt of 0.00343 radian for the interstage seal. The increase

in deformation in the interstage seal can be attributed to the additional heat input in the

0.060-inch gap, as well as to the difference in operating conditions. Further substantial in-

creases in the 0.060-inch gap to reduce the heat generation are subject to physical limitations,

and increases of a smaller order of magnitude, such as doubling the original clearance value

of 0.060-inch does not offer any appreciable decrease in heat generation.

7. TRACKING ANALYSIS

The general approach to the semirigid seal tracking analysis is the same as that for the OC

diaphragm seal. Thus, for symbol definition and analytical details the reader referred back
to Section IB of this report. The analysis of the semirigid seal was performed using the in-

puts shown in Table XII.

TABLE XlI

INPUT DISTORTIONS USED IN THE TRACKING ANALYSIS OF THE

SEMIRIGID END AND INTERSTAGE SEALS

Cruise

Mode
Number _i e. _"

n (inches) (radians) (radians)

0 0 0

1 0.0015 -0.00011

2 0.0005 -0.000037

0.003

Idle 0 0 0

1 0.0015 -0.00011

2 0.0005 -0.000037

0.0004

Take-Off 0 0 0

1 0.0015 -0.00011

2 0.0005 -0.000037

0.003
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Note that, in line with the conclusions arrived at in the thermal distortion analysis, a tilt
angle (o_) of 0.003 radian was assumed at both cruise and take-off conditions in the calcula-

tions of air-film thicknesses. At idle, where the likelihood of severe thermal gradients is

greatly reduced, the air film characteristics were taken at a tilt angle of 0.0004 radian.

The influence coefficients are listed in Table XIII, and final tracking results are given in

Table XIV. As in the OC diaphragm seal tracking analysis, separate values of minimum film
thickness are given for the n = 0, n = 1, and n = 2 conditions. The minimum film thickness

values for n = 0 were obtained from Figures 31, 33, and 35. It is then assumed that all

minimum film thickness losses are in phase and thus directly additive, yielding the combined
worst-case minimum film thickness shown.

Due to the positive tilt, at high pressure differentials such as the ones encountered at take-off

conditions, the minimum film thickness actually increases over the original parallel film thick-
ness. For lower pressure differentials, appreciable film losses can be noted. The idle condition

in particular, where the pressure differential across the seal is only 2 psi indicates a 58 percent

loss in film thickness in the minimum film thickness area. In general, however, considering

the conservative assumptions used, the tracking characteristics of the semirigid seal are quite
satisfactory.
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TABLE XIV

SEMIRIGID INTERSTAGE SEAL TRACKING RESULTS

Mode Mean Minimum

Number Film Thickness Film Thickness

n a, radians h h
m min

Total

Minimum

Film Thickness

hTmin

Cruise
0 0.000850

1 0.003 0.00102 0.000851

2 0.000713
0.00041

Idle
0 0.000700

1 0.0004 0.00080 0.00075

2 0.00064
0.00049

Take Off
0 0.001400

1 0.003 0.00079 0.000736

2 0.000708
0.00126
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II. TASK II

COMPRESSOR END SEAL AND STATOR

INTERSTAGE SEAL EXPERIMENTAL

EVALUATION

A. INTRODUCTION

This phase of the program provides for final design and procurement of compressor end
seals and stator interstage seals, design and fabrication of a test rig, and experimental evalua-

tion of the compressor seals.

The final design of the four compressor seal concepts selected for experimental evaluation

includes all calculations, material determinations, analyses, and drawings necessary for seal

optimization, procurement and experimental evaluation. A test rig will be designed and
fabricated to evaluate the selected compressor end seals and stator interstage seals under

simulated compressor operating conditions. The test apparatus will simulate the last stages

of a full-scale compressor including supporting members and bearing system in order to

faithfully duplicate structural flexibility and thermal gradients.

The compressor end seals and stator interstage seals will be calibrated in incremental steps

at room-temperature static conditions, room-temperature dynamic conditions, and sub-

sequently over the full speed, pressure, and temperature operating ranges. The seals will

then be subjected to endurance testing and finally will undergo a take-off and cruise cyclic
test.

Final design layouts and detailed drawings have been completed for the one-side floated-shoe

end and interstage seals and for the full-scale test rig in which the seals will undergo experi-
mental evaluation. Hardware procurement is progressing for each of the above items.
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B. ONE-SIDE FLOATED-SHOE SEAL

The fourth semi-annual progress report (Reference 7) contained a general review of the

progress made in the design and manufacture of the floated-shoe seal configuration. The

results of the primary gas film calculations using the triple-pad version of the shrouded
Rayleigh Step Bearing computer program were presented in Tables XX and XXI of Reference

7. During the past month these calculations have been expanded, and the results are plotted

in Figures 39 and 40 for end and interstage seals. The figures illustrate the effect of spring

load on the design point dimensionless load capacity and film thickness. A final tabulation

of end and interstage seal design point gas film characteristics is presented in Table XV. The

values represent the ideal parallel film situation and the effects of thermal distortion or seal
plate runout on the gas film characteristics have not been considered.

1.3

1.2

o _ _IDLE

\ /,TAKE-OFF

0.8 ,
j I j _-"-"-'_ _'--

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

OPERATING FILM THICKNESS (h)" MILS

Figure 39 One-Side Floated-Shoe End Seal Gas Film Calculation

1. ONE-SIDE FLOATED-SHOE END SEAL

Most of the recent work on the end seal has consisted of procurement and fabrication of

parts and instrumentation. At the end of December, 1967, all small parts, such as pins,

springs, cups, etc. were completed and ready for assembly. The seal ring, seal-ring support,

and piston rings were ready for finish machining, and the sealing shoes were ready for final
machining.
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TABLE XV

DESIGN POINT GAS FILM CHARACTERISTICS

End Seal, One Side Floated Shoe

Idle

Applied Pressure (psia)

Back Pressure (psia)

Air Temperature (psia)

Mean Radius* (Inches)

Primary Film Thickness (Mils)

Secondary Film Thickness (Mils)

Seal Leakage (lb/sec)

Primary

Secondary (4 Seals)

Shoe Gap
Total

Primary Film Stiffness (lb/in)

33

20

200

13.620

0.75

0.36

0.003

0.011

0.010
0.024

209663

*The Room Temperature Mean Radius is 13.6 Inches

Cruise

100

20

1200

13.725

1.03

0.5

0.020
0.047

0.039
0.106

457054

Take Off

170

20

680

13.669

0.92

0.55

0.083

0.335

O.08O

0.498

566839

Interstage Seal, One Side Floated Shoe

Idle

Applied Pressure (psia)

Back Pressure (psia)

Air Temperature (°F)

Mean Radius* (Inches)

Primary Film Thickness (Mils)

Secondary Film Thickness (Mils)

Seal Leakage (lb/sec)

Primary

Secondary (4 Seals)

Shoe Gap
Total

Primary Film Stiffness (lb/in)

33

31

200

14.309

0.99

0.36

0.006

0.007

0.002

0.015

107887

*The Room Temperature Mean Radius is 14.288 Inches

Cruise

i00

75

1200

14.419

1.03

0.40

0.009

0.015

0.016

0.040

358764

Take Off

170

120

68O

14.360

0.725

0.42

0.020

0.099
0.031

0.149
645119
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Figure 40 One-Side Floated-Shoe Interstage Seal Gas Film Calculation

The contractor has decided to use capacitance proximity probes for measuring film thickness.

These probes will be embedded in two shoes 90 degrees apart. Six probes are now on order.

A shoulder on the probe will be electron-beam welded to the rear of the floated seal shoe.
The rear side of the shoe will have a counterbore to accept the shoulder on the probe. A

high-temperature ceramic cement will fill the 0.030-inch radial clearance between the body of

the probe and the cavity in the shoe. The utility of the probe will, however, be limited by
the temperature limits on the electrical insulation of the probe's coaxial cable.

Pressure probes will consist of coiled stainless steel tubing fastened to the sealing shoe by a
suitable connecting element, which will be electron-beam welded to the shoe. Sample parts

are now being made up to test the feasibility of this connection and to test the effects of

thermal growth and thermal cycling on the very small welds. This type of probe will pro-

vide almost pin-point pressure data, an advantage not provided by the relatively large area

of the dynamic pressure transducers.

2. ONE-SIDE FLOATED-SHOE/INTERSTAGE SEAL

Pratt & Whitney Aircraft has completed a detailed thermal analysis of the one-side floated-

shoe interstage seal. This analysis includes the heat-transfer effects of the primary and
secondary leakage air and a more accurate determination of the convection and conduction

paths within the seal parts, than had been available for the preliminary analysis. The re-

sults of this analysis are presented in the thermal map shown in Figure 41. It appears from

the map that the temperature gradient across the seal carrier will be on the order of 100
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degrees Fahrenheit, which is considered excessive. To reduce this gradient, the contractor

is considering the use of a heat shield. The shield would provide a more nearly uniform

seal temperature by keeping the 800-degree Fahrenheit cooling air for the disk from coming

in contact with the interstage seal parts.

The more sophisticated methods to be used in the final thermal analysis are being incor-

porated in the TOSS computer program. These changes include a more accurate method of

determining the thermal effects of leakage air and an improved method of determining con-

duction paths.

Fabrication of parts and instrumentation has started. At the end of December, 1967, the

vendor was preparing to rough machine the large rings for the seal ring, seal-ring support,
and piston rings. Instrumentation will be the same as that for the one-side floated-shoe

end seal, although modifications may be made when the contractor has gained more ex-

perience with the end seal.
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C. OC DIAPHRAGM END SEAL AND SEMIRIGID
INTERSTAGE SEAL

NASA approved both the OC diaphragm end seal and the semi-rigid interstage seal for in-

vestigation under Task II in November, 1967. Detailing of the OC diaphragm end seal has

been completed, and the drawings are being checked before release. Detailing of the semi-

rigid interstage seal is still in process. However, the results of the tracking analyses of these

seals are still preliminary in nature.

1. MODIFICATION OF THE CROSS SECTION

The semi-rigid seal cross-section is shown in Figure 42 in its final configuration. The changes

included further widening of the thermal barrier to reduce the axial temperature gradient of

the seal and the redistributing of the mass to keep the centroid at the original position. The

position of the centroid is important because it could affect the mechanically induced
distortions.

q_

0.8

Figure 42 Semirigid Interstage Seal

-_-- O. 175-_"

--F
0.175

l
0.35

I

/ 0.25

0.05

l
y*

Y* = 0.402

x* = 0.099
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2. THERMOELASTIC ANALYSIS OF SEMI-RIGID INTERSTAGE SEAL

Thermally induced distortions on the semi-rigid interstage seal were formulated with a

thermoelastic finite element computer program (Reference 10). The temperature distri-

bution is basically the same as the one shown in Figure 38 but it was redistributed to account

for the new geometry. Figure 43 shows the results of the analysis and gives axial and

radial displacement for certain selected points. The rotation of the seal face is 0.00337

radians in the direction that creates a converging flow passage with the runner, which agrees

with the results (0.00343 radians) discussed in Appendix F. The numbers inside the cross-

section indicate the subdivision as it was used in the finite element computer deck. The
table lists the temperature for each element.

u = 0"00126
v = 0,1562

10 i 1 17

u=O
v-0.1542 9 12 4

4 8 13 3
u = --0,00034
v = 0,1531

3 7 14 2
u ---0"0009
v = 0,1513

2 6 15 1
u = --0"0023
v = 0"1503 = 0.0007

v= 0.1471

u = --0"001685
v = 0"14885 u = 0.0005

v = 0.1459

SUBSYSTEMS

I
II

u = 0,0039
v = o,1554

u = 0,00336 u = 0,0060
v = o,1537 v = 0,1528

I

5 12 13

6 11

7 10

8 9

3 5

2 6

14 1 7

u = 0.00622
v = 0.1510

J8

u = 0.046
v = 0,1484

III

u = 0,00818
v = 0"1539

13 111__
12

11

10

m

Figure 43 Semirigid Interstage Seal Thermal Deflection

u = 0"0109
v = 0,1527

u = 0,0103
v = 0"1581

CL
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ELEM

TEMPERATURE DISTRIBUTION (SEMI-RIGID INTERSTAGE)

SUBSYSTEMS

I II III

TEMP OF ELEM TEMP OF ELEM TEMP OF

1 1311 I 1316 1 1300

2 1318 2 1316 2 1301

3 1320 3 1315 3 1300

4 1322 4 1315 4 1300

5 1311 5 1313 5 1300
6 1318 6 1314 6 1301

7 1320 7 1314 7 1300

8 1321 8 1314 8 1290

9 1319 9 1312 9 1291
10 1317 10 1312 10 1293

11 1317 11 1311 11 1295

12 1318 12 1309 12 1300

13 1319 13 1305 13 1300

14 1319 14 1301 14 1300

15 1317 15 1300
16 1312

17 1316

3. SEMI-RIGID SEAL SUPPORT

Seal support is the name given the structure that serves as the span between the seal ring

and the rig case. It functions as a surface on which the secondary seal piston ring rides, and

also an attachment for the torque pins and coil springs.

It is imperative that this sealing surface remain parallel (less than 1 milliradian slope) with the

centerline. This is complicated by the fact that the pressure forces that act on the structure

are large and cause slopes as high as 20 milliradians in some sections of the structure, To

keep this large angular distortion from being transmitted to the sealing surface, a thin cylin-
der was placed in the structure to damp out the angular distortions and allow the sealing

surface to remain a true cylinder°

In Figure 44, a sketch of the structure is presented along with curves that describe how the

structure behaves when subjected to the pressure loads. It also shows the radial deflections

and slopes when the piston ring carrier assembly and runner are in the extended position

(no dashed arrows), and shows the deflections and slopes with these parts in the retracted
position (with dashed arrows).
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D. TEST RIG AND TEST STAND

During the past six months, the contractor has been procuring and fabricating the required

parts for the test rig and the test stand. All of the parts required to assemble the rotor of

the test rig have been received and are being inspected. Three parts will receive some

reworking in order to achieve a satisfactory surface finish. Detailed plans for the rotor

instrumentation have been completed.

All required instruments and hardware for the test stand are either on order or in-house.
The required time for building up the stand has been reduced, since a better stand has be-

come available. The new stand already has many of the service lines for air, water, and

electricity in place. A high-capacity fan is installed at one end of the stand, and a vent is

installed at the other. An instrument panel is in place, and partially instrumented. The new

stand already has double doors, so that phase of the build-up is now unnecessary. The

rails for the drive and rig support have been installed in the stand. A remotely controlled

hatch has been installed so that outside air can be drawn into the stand for rig cooling. The

drive support system, consisting of the stand, engine, transmission, and gearbox has been

assembled and is ready for installation in the stand. The ceiling monorails and chainfalls
have been installed.
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III. TASKIII

COMPRESSOR STATOR PIVOT BUSHING AND SEAL CONCEPT FEASIBILITY ANALYSIS

Work performed under Task II1 was completed in the first year of the project. It is discussed

in the first two semiannual reports (PWA-2752 and PWA-2875).

PAGENo. 103



PRAT'r_ WH,TNeYA,RCRAF'r PRECEDING PAGE BLANK NOT FILMED. PWA-3302

IV. TASK IV

PIVOT BUSHING AND SEAL EXPERIMENTAL EVALUATION

A. INTRODUCTION

This phase of the program provides for final design and procurement of bushings and seals,

design and fabrication of a test rig, and experimental evaluation of bushing and seal assemblies.

The final design of the two selected concepts for experimental evaluation includes all calcu-

lations, material determinations, analyses, and drawings necessary for pivot bushing and seal
optimization, procurement, and experimental evaluation.

A single-vane test rig has been designed and fabricated to evaluate two selected pivot bushing

and seal designs under simulated operating conditions for the last compressor stage. The vane

and actuating mechanism are applicable to current advanced engine practice.

The pivot bushing and seal assemblies will be calibrated in incremental steps over the full

pressure and temperature range, with a maximum pressure of 135 psi and a maximum tempera-
ture of 1200 degrees Fahrenheit.

The seals will be subjected to a cyclic endurance run of at least 40 hours duration following

a test program which provides for simulation of take-off (20 hours) and cruise (20 hours)

conditions typical of advanced engine designs through duplication of:

Compressor stage air temperatures

Supporting structure geometry

Supporting structure temperatures

Pivot movements as required for the vanes

Pivot loading (mechanical loading to simulate air loading is acceptable)

Compressor stage pressure drop

The pivot movement will be a minimum of 13 degrees at 10 cycles per minute. The pivot

loading will include a vibratory load at a convenient frequency super-imposed on the steady

load and equal to approximately -+15 percent of the steady load.

Final design layouts and detailed drawings have been completed for the single bellows and

spherical seat vane pivot seals and for the test rig in which the seals will undergo experimental

evaluation. Hardware procurement is complete.
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B. DESCRIPTION OF SEALS AND TEST RIG

During the six-month period covered by this report, the Task IV work has largely consisted

of hardware procurement and instrumentation. Most of this work has now been completed,
and the first test run has been initiated.

Testing to date has been conducted with a single-bellows vane pivot seal in the test rig. A

schematic of the seal assembly is shown in Figure 45,and the seal is shown assembled on a

simulated vane (rod) in Figure 46. As shown in the photograph, thermocouples were in-

stalled to measure the temperature of the seal seat, the base of the simulated vane, and the

seal bushing. The seal seat and seal bellows are shown before assembly in Figure 47, and the

seal installed in its housing is shown in Figure 48.

The push rod used to transmit the static vane-bending moment and the superimposed vibratory

load is shown in Figure 49 with a close-up view of the strain gauge. The strain gauges are
installed in a four-arm bridge mounted on a tube 0.042 OD x 0.038 ID to measure the bend-

ing load applied to the simulated vane. The gauges are made from Constantan foil with grid
size of 0.015 x 0.020 inch. They are accurate within a temperature range of -100 to +400

degrees Fahrenheit. In installation, the push-rod support arm was misaligned so that the rod
did not follow the cam properly. This problem was remedied by increasing the inside diam-

eter of the carbon bearing. The vane cycling motor and linkage operated smoothly.

Figures 50 and 51 show the vane actuation link and its strain gauge. Like the gauge on the

push rod, this strain gauge is made by the Budd Company, and is accurate within a tempera-

ture range of -100 to +400 degrees Fahrenheit. Unlike the other, this gauge is made of

nichrome base alloy, and has a grid size of 0.062 x 0.067 inch.

Some difficulties have been encountered in procuring the seal parts. In the case of the

spherical-seat seals, some of the test pieces did not conform to specified dimensions for

spherical radii. The divergence was significant, and rework was required. In the case of the

bellows seals, inspection revealed that the free lengths of some bellows were below the mini-

mum required operating length. In some instances, the squareness of the sealing face also

required rework in order to provide a more nearly uniform face loading against the seat. In

order to solve these problems and to prevent the recurrence of similar problems, Pratt &

Whitney Aircraft has set up a continuing program with both seal vendors to assist them in

reoperating the parts to the required tolerances.

As previously mentioned, the first assembly of the test rig included a single-bellows vane

pivot seal test configuration. Photographs of the assembly installed in the test stand are

shown in Figures 52, 53, and 54. Instruments used include a Brown indicator for tempera-

ture readout, two pressure gages to monitor "air-in" pressures to the rig, a capillary flow-
meter, and a water monometer to measure the pressure differential across the flowmeter.

All of the instruments are standard except the flowmeter, which is a steel "hypodermic"

tube, 0.008 inches ID by 20 inches long, brazed into end fittings and supported by an ex-

ternal shell. The laminar air flow through the tube is linear to the pressure drop across the

length. The flowmeter was designed and calibrated for the operating pressure range and the

anticipated air loss through the test seals.
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Figure 45 Single-Bellows Vane Pivot Seal
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Figure 47 Seal (Left) for Single-Bellows Vane Pivot Seal, and Bellows (Right) (XP-79777) 
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Figiirc 50 Vane Actuation Link (XP-80487) 
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On the first test run, readings from the strain gauges and thermocouples indicated that the

rig was working properly. However, pressurization revealed some air losses past the holes

for the thermocouple leads (shown in the foreground of Figure 54). The loss of air through

these holes invalidated the seal loss indications because they are determined by measuring

flow upstream of the rig. To eliminate the leakage, the contractor has decided to braze

small-bore stainless steel tubing into the existing thermocouple holes. Instrumentation leads

will be passed through the tubing and sealed with epoxy cement or low-temperature solder

at the end of the tubing, some distance away from the hot rig. The testing which has been

accomplished so far has successfully demonstrated the mechanical design concepts employed

in the rig, and has demonstrated the ability of the instrumentation to provide the required
data.
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APPENDIX A

FLEXIBLE SEAL TRACKING ANALYSIS CONPUTER PROGRAM

The computer program is comprised of an executive program and a subroutine KCAL. The

executive program performs all the ca]culations necessary for the solution of natural frequen-

cy and dynamic response. The subroutine KCAL is used when the gas film stiffnesses are
not known.

1. EXECUTIVE PROGRAM

Seven major input cards are required for each set of input for the main program.

Card I. Title Card (80H)

Card 2. Format (8 (El0.3))

Item Number (8 items)

1. A

2. G

3. E

4. OMEGA

5. R

6. AM1

7. CK1

8. RHO

Dummy thickness of seal ring (inches)

Modulus of rigidity (lb/in 2 )

Modulus of elasticity (lb/in 2 )

Rotational frequency (rad/sec)

Mean radius of the seal ring (inches)

Mass of the carrier (lb-sec z/in)

Spring rate of the carrier spring (lb/in)

Mass density of the seal ring material (lb secZ/in 4 )

Card 3. Format (1015)

Item Number (6 items)

1. IND

2. NGASTF

3. NKSSS
4. NAIP

5. NEN

6. NSW

7. NOPAD

1 for more cases, O for last case.

Number of sets gas film stiffness values

Number of sets of flexible support stiffness

Number of sets of polar moment of inertia
Number of modes of distortion present in the runner

1 for use of KCAL subroutine and 0 for direct input of gas-film

characteristics

Number of pads (0 for double pad, 1 for single pad)

Card 4. Format (5 (E 12.5))

Item Number (5 items)

Note: One Card 4 needed for each NGASTF value used.
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1. HMN

2. CKSS

3. CKSA

4. CKAS

5. CKAA

Nominal film thickness (inches)

Axial stiffness of the gas film (lb/in/in)

Axial change of load on the gas film due to angular displacement

of the rotor (lb/rad/in)

Change of moment load on the gas film due to axial displacement

of the rotor (in-lb/in/in)

Angular stiffness of the gas film (in-lb/rad/in)

Card 5.

Card 6.

Format (5 (El 2.5))

Item Number (5 items)

Note: One Card 5 needed for each NKASS value used.

1. KSSS

2. KSAS

3. KASS

4. KAAS

5. AM2

Format (5 (El

Axial stiffness of the flexible support (ib/in/in)

Change of axial load on the flexible support due to angular

displacement (lb/rad/in)

Change of moment load on the flexible support due to axial

displacement (in-lb/in/in)
Angular stiffness of the flexible support (in-lb/rad/in)

Mass of the seal ring (lb-sec z/in)

2.5))

ltem Number (5 items)

Note: One Card 6 needed for each NAIP value used.

1. B

2. AI
3. AIP

4. AITT

5. AREA

Radial dimension of active seal width (inches)

Section moment of inertia (in 4 )

Section polar moment of inertia (in 4 )
Section mass moment of inertia (Ib-in-sec z )

Cross sectional area of the seal ring (in 2)

Card 7. Format (5 (E 1 2.5))

Item Number (5 items)

Note: One Card 8 needed for each NEN value used.

1. EN Mode of seal ring and rotor distortion present (0 = conical,

1 = out of plane, 2 saddle shape)

2. SDELM Transverse displacement of the rotor 6 (inches)

3. ETAM Transverse displacement of the seal ring r/(inches)

4. EPSN Angular displacement of the rotor en (radians)

5. ZETAN Angular distortion of seal ring _'n (radians)
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2. SUBROUTINE KCAL

This subroutine is required only if NSW = 1 (see instructions for Card 4). The angular and

cross-coupling stiffnesses of a seal, as shown in Figure 23, are computed from the basic per-
formance data of the gas film. The subroutine KCAL will compute these stiffnesses at a

given nominal film thickness.

a. DOUBLE-PAD INPUT INSTRUCTIONS

For a double-pad seal (Figure 23), the gas film's performance characteristics needed for KCAL

are the load capacity and the center of pressure for each pad at different film thicknesses and

tilted positions. It should be noted that the load capacities and centers of pressure are

dimensionless quantities, while film thickness is in inches. Five cards are required for each

double-pad KCAL computation.

For a parallel film, three sets of data are required. Each set consists of the film thickness
and the load capacities and centers of pressure of both pads at that thickness. HOP = h o +

Ah. At HOP, the load capacities of the lower and upper pads are represented by W20P and

Wl 0P respectively, and their centers of pressure are represented by X20P and X10P respec-

tively. H0 = h . At H0, the load capacities of the lower and upper pads are represented by
o

W20 and W10 respectively and their centers of pressure are represented by X20 and X10 re-

spectively. H0M = h - Ah. At HOM, the load capacities of the lower and upper pads are

represented by W20M°and W10M respectively, and their centers of pressure are represented

by X20M and X10M respectively.

For a tilted film, two sets of data are required. Each set consists of the tilt angle and film

thicknesses for both pads, load capacities of both pads, and centers of pressure for both

pads. ANGM = - Aa, where Act is a positive small angle in radians. At a tilt angle ANGM,
the film thicknesses at the middles of the lower and upper pads are given by H2M =

h o + (Act/2)(b 3 + b z ) and H1M = h o -(Aa/2)(b 3 + b I) respectively, the load capacities are
given by W2M at (-Aa,H2M)and WlM at (-Aa, HIM) respectively, and the centers of pressure

are given by X2CM at (-Aa, H2M) and X1CM at (-Aa, HIM) respectively. ANGP = Aa. At a

tilt angle ANGP the film thicknesses are given by H2P = h o - (Aa/2)(b 3 + b z ) and
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HIP = h o + (Aa/2)(b 3 + b_), the load capacities by W2P at (Aa, H2P) and WIP at (Aa, HIP),

and the centers of pressure by X2CP at (Aa, H2P) and XICP at (Aa, H1P).

Five data items are required to describe the pads' geometry and pressure difference. The

centroid of the section from the high-pressure side is denoted by XSTAR (in inches). The

widths of the lower and upper pads are given by B2 and B l respectively (in inches). The

pressure difference between the pads is represented by DELTP (in psi). DELTP = P2 - Pl"

The width of the pad recess is given by SDST (in inches). SDST = b-(bl+ b 2).

The above data should be arranged in FORMAT (8(F10.5)) in the following order:

Card I.

Item Number (8 items)

1. HOP

2. X20P

3. W20P

4. XIOP

5. W10P

6. H0

7. X20

8. W20

Film thickness h + (inches)
o

Center of pressure of the lower pad at (a = 0, h +,)

Load capacity of the lower pad at (a = 0, h+o

Center of pressure of the upper pad at (a = 0, h,+,)

Load capacity of the upper pad at (ct = 0, h_)
Film thickness h (inches)

o

Center of pressure of the lower pad at (a = 0, h o
Load capacity of the lower pad at (a = 0, h )

Card 2.

Item Number (8 items)

1. X10

2. Wl0

3. H0M
4. X20M

5. W20M

6. XIOM

7. W10M

8. ANGM

Center of pressure of the upper pad at (a = 0, h o)

Load capacity of the upper pad at (ct = 0, ho )

Film thickness h2 (inches)
Center of pressure of the lower pad at (a = 0, h7 )
Load capacity of the lower pad at (a = 0, h,T )

Center of pressure of the upper pad at (a = 0, h,7 )

Load capacity of the upper pad at (a = 0, 112)
- Aa small angle of seal tilt (radians)

Card 3.

Item Number (8 items)

1. H2M

2. X2CM

3. W2M

4. HIM

5. XICM

6. WIM

Film thickness at the middle of the lower pad at a = - Aa

Center of pressure of the lower pad at (ct = - Act, H2M)

Load capacity of the lower pad at (a = - Act, H2M)
Film thickness at the middle of the upper pad at (a = - Act)

Center of pressure of the upper pad at (ct =- Act, HIM)

Load capacity of the upper pad at (a = - Act, HIM)
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7. ANGP

8. H2P
Act small angle of tilt (radians)

Film thickness at the middle of the lower pad at (a = Aa)

Card 4.

Item Number (8 items)

1. X2CP

2. W2P

3. H1P

4. X1CP

5. W1P

6. XSTAR

7. B2

8. B1

Center of pressure of the lower pad at (a = Act, H2P)

Load capacity of the lower pad at (ct = Act, H2P)

Film thickness at the middle of the upper pad at (a = Aa)

Center of pressure of the upper pad at (a = Aa, H 1P)

Load capacity of the upper pad at (a = Aa, H1P)
Section centroid (inches)

Width of the lower pad (inches)

Width of the upper pad (inches)

Card 5.

Item Number (2 items)

1. DELTP

2. SDST
Pressure differential (psi)

Pad recess (inches)

An example will indicate the method used to determine the input numbers. The seal under

consideration is the end seal, which consists of the spiral-grooved, orifice-compensated upper

pad and Rayleigh-step lower pad at cruise conditions.

Card 1. Card 2.

HOP = .00105 inches X10 = .4315

X20P = .5 W10 = .842

W20P = .62 H0M = .00095

X10P = .4296 X20M = .5

W10P = .833 W20M = .648
H0 = .001 X10M = .4332

X20 = .5 W10M = .852

W20 = .635 ANGM = .001

Card 3. Card 4.

H2M = .0014 X2CP = .488

X2CM = .512 W2P = .808

W2M = .55 H1P = .0014

H1M = .0006 X1CP = .4315

XICM = .4326 W1P -- .825

W1M = .915 XSTAR= .65

ANGP = .001 B2 -- .5

H2P = .0006 B1 = .5
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Card 5.

DELTP = 80.

SDST = .3

b. SINGLE PAD INPUT INSTRUCTIONS

The angular and cross-coupling stiffnesses of a single-pad seal, as shown in Figure 20, are

computed in the same manner as for the double-pad seal. The subroutine KCAL will compute
these stiffnesses at specific film conditions. The gas-film performance characteristics needed

for the input of KCAL are the load capacity and center of pressure at the perturbed film

thicknesses and tilted positions of the nominal film thickness. To compute the single-pad

stiffnesses the gas film-data described below is needed.

For a parallel film, at h = 110 = H0, the load capacity and center of pressure are represented

by W0 and XC0 respectively. At h = h + Ah = 11+o= HOP, the load capacity and center
of pressure are represented by W0P and SCOP respectively. At h = ho - Ah = h ° = HOM,

the load capacity and center of pressure are represented by W0M and XCOM respectively.

For a tilted film at a =- Aa = ANGM (where Aa is a small positive angle in radians), the

load capacity and center of pressure are given by WM and XCM respectively at h = H0
At a = Aa = ANGP, the load capacity and center of pressure are given by WP and XCP

respectively at h = H0.

Three items of data concerning geometry and pressure-differences are required. The cen-

troid of the section from the high-pressure side is given by XSTAR (in inches). The width

of the seal pad is denoted by B (in inches). The pressure difference Ap = P2 " PI is

represented by DELTP (in psi).

A total of three cards is required for each single pad KCAL computation. The above data

should be arranged in FORMAT (8(F10.5)) in the following order:

Card 1.

Item Number (8 items)

1. H0
2. XC0

3. W0

4. HOP

5. XCOP

6. W0P

7. H0M

8. XCOM

Film thickness ho (inches)

Center of pressure at (a = 0, ho)

Load capacity at (a = 0, ho)

Film thickness h+o(inches)

Center of pressure at (a = 0, h+o)

Load capacity at (a = 0, h+o)

Film thickness h o (inches)
Center of pressure at (a = 0, h +)
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Card 2.

Item Number (8 items)

1. W0M
2. ANGP

3. ANGM

4. XCP

5. WP

6. XCM

7. WM
8. XSTAR

Load capacity at (a = 0, h o )

Aa small angle of tilt (radians)

- Aa small angle of seal tilt (radians)

Center of pressure at (a = Aa, h o)
Load capacity at (a = Aa, h o)

Center of pressure at (a = - Aa, h o)

Load capacity at (a = - Aa, h o)
Section centroid (inches)

Card 3.

Item Number (2 items)

1. B

2. DELTP
Width of the pad (inches)
Pressure differential (psi)

The gas film values are determined from the upper pad data in Appendix B. The output

from the subroutine is Kss, Ksa, Ktts, and K_ta .

The output from the main program using the values determined in the subroutine KCAL is

essentially the same as the output of the double pad program.

3. EXPLANATION OF OUTPUT

a. TRACKING PARAMETERS

GAM 1 Defined by Equation 27

GAM 2 Defined by Equation 27

GAM 3 Defined by Equation 27

GAM 4 Defined by Equation 27

GAM 5 Defined by Equation 27
GAM 6 Defined by Equation 27

GAM 7 Defined by Equation 27

GAM 8 Defined by Equation 27

GAM 9 Defined by Equation 27

GAM 10 Defined by Equation 27

GAM 11 Defined by Equation 27

F 1 Defined by Equation 28

F2 Defined by Equation 28

A I Defined by Equation 53

A2 Defined by Equation 53

K 2

C1/C 2 -- (C1/C3) (I/C2/C 3) = Kl + K 2 - M109 2
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b. NATURAL FREQUENCY ELASTIC VIBRATIONS

NUN 1

NUN 2
Defined by Equation 41

Defined by Equation 42

c. DYNAMIC RESPONSE ELASTIC VIBRATIONS

CDELN Defined

ALFAN Defined

BETAN Defined

UN Defined
VN Defined

CA1 Defined

CA2 Defined

CB 1 Defined

CB2 Defined

CU 1 Defined

CU2 Defined

CV 1 Defined

CV2 Defined

by Equation 47

by Equation 50

by Equation 50

by Equation 50

by Equation 50

by Equation 51

by Equation 51

by Equation 51
by Equation 51

by Equation 51

by Equation 51

by Equation 51

by Equation 51

d. NATURAL FREQUENCIES RIGID BODY VIBRATION

NU 1

NU 2
Defined by Equation 54

Defined by Equation 54

e. DYNAMIC RESPONSE RIGID BODY VIBRATION

CI/C3
C2/C3

Defined by Equation 67

Defined by Equation 68

f. DIMENSIONAL RESULTS

PHI = %. (% + t3n)

DELTA H 6 h = b {[(u + Vn)-Snl +0.5 I_l}

DELTA (5 = b8

ETA = b_2n

HMIN hm in = hm 5h
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APPENDIX B

THERMAL ANALYSIS

The methods of thermal analysis presented in this Appendix were used to determine the

temperature distributions in the OC diaphragm seal and the semirigid seal. For the sake of

clarity the analysis is discussed under the three headings:

.

2.

3.

The Temperature Distribution by Numerical Methods
Heat Generation

Surface Coefficients for Convective Heat Transfer

For all calculations, steady-state cruise conditions were assumed.

1. THE TEMPERATURE DISTRIBUTION BY NUMERICAL METHODS

The circumferential symmetry of the seal assemblies made a corresponding symmetry as-

sumption for the temperature distribution possible. Consequently, the thermal analysis was

simplified to that for a two-dimensional system.

The seal assemblies were broken down into a number of contiguous orthogonal subvolumes

each of a shape suited to the requirements of local temperature information and the over-all

geometry. The accuracy of the thermal maps computed depends on the small size of these

subvolumes. As, however, the time taken to compute one thermal map for a particular con-
figuration depends also on the number of subvolumes, a compromise had to be reached

during the design stage to limit their number. Each subvolume contains one nodal point at

which the temperature is determined. Details of nodal point numbers and locations are

given in the appropriate sections for the seals.

The determination of the temperatures at the nodal points in the seal assemblies was carried

out by conventional methods of thermal network theory. The physical basis of these

methods is the analogy to Kirchhoff's first law for electrical circuits. This states that under

steady-state conditions, the algebraic sum of heat flows into a junction point (nodal point)

of the network is zero. As steady state conditions were postulated, the heat flow for each

internal or surface nodal point by conduction and by convection is given by

i_ qi = 0*

Because no very large temperature differences existed across gaps between working elements

of the seal assembly, heat exchange by radiation was considered to be negligible. The heat

flows between adjacent nodal points is given by

Z_T

q_- £R
m i11

*The symbols are identified in the Nomenclature
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where the local conductive resistances have the form

L
R-

kA

and the convective resistances

1
R - --

hA

The scheme used for setting up the equations describing heat flow to the nodal points by

convection and conduction only is illustrated by specific examples.

If the nodal point (i,j) is an interior point and heat transfer is by conduction only through

the material which has a uniform thermal conductivity k, the thermal network is represented
by the diagram shown in Figure 55.

I Ti,_j_ I

,j+ 1 -.)i, j

i,j

_ Ri, d-1 .-.._i,j

T
i,j-1

Figure 55 Thermal Network for Internal and Surface Nodal Points

The basic equation for heat flow in Figure 55 is

Ti, j+l -Ti, j Ti+l, j-Ti, j Ti, j.i "Ti, j Ti.l, j'Ti, j
+ + + = 0

Ri, j+l--_i, j Ri+l, j--_i, j Ri, j.l---_i, j Ri-l, j.-_i, j

L
and each R is equal to the appropriate --.

kA

If two nodal points, say (i-l, j) and (i, j), are located in two adjacent materials with thermal

conductivities k_ and k 2 then

Lt L 2
R - +__

i-l, j"_i, j kl A k2 A
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where L] + L 2is equal to the total length of the pad between (i-l, j) and (i, j).

If the nodal point (i, j) is a surface point, then heat exchange with the adjacent air is by con-

vection. Thus, if (i, j) lies on the surface and (i, j+l ) lies in the air, then

1
R. .

|' J+l'-_i' J hA

If nodal point (i, j) is an interior point but the subvolume bounds on a surface with air

adjacent to it, then for example

1 L
IP +
txi j+ l_i j hA' kA

Nodal points in subvolumes in the air film are treated similarly, except that there is l_eai

transfer by mass flow and by heat generation due to shearing. Heat transferred by mass
flow is calculated from

qn = lnncpAT

The heat generated in each subvolume is denoted by qii, j)" Details of its determination are
discussed below. Nodal points in the air film are located midway between the adjacent
working surfaces.

Determination of the gap Reynolds number indicated that flow was laminar. Consequently

the heat transfer across the gap was calculated as by pure conduction. The thermal network
for each nodal point in the film is shown in Figure 56.

T
i-l,j

/

S
/
/
/
/
4
/
/
/
/

met
a p a

\
 Vv'Cv'Cv--

R _ 1,j-._,j

Ti, j+ 1

"q"i j

Ri+ 1,j -_-i,j

mi, i % T_, i

/

/

/

/ m T
/ i,j+ lCp i,j+ 1

/

/
/

/ T
/ i+l,j

/

/

/

/

/

Figure 56 Thermal Network for Nodal Points in the Gap between Seal and Seal Plate
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The mass flow rates of air through the gap are calculated in Section IB of this report. The

basic equation for heat flow is

Ti+ 1, j "T.. Ti-1, j "T.
_'J "'" T i + m c T -m..c T." J + + qi, j + mi, j+ 1 Cp , j+ 1 a p a _, j p _, j

Ri+ 1, j"-" i, j Ri-1, j---_i j

=0

where

mi, j = mi, j+l + ma

The term macpT a represents heat transferred to (i, j) by air flow from an external supply
such as through an air port.

The physical properties of air at 1200°F used in the thermal analysis are

Thermal conductivity k = 0.037 BTU/hr-ft2-°F/ft

Absolute viscosity /a = 0.0955 lb/hr/ft

Specific heat at constant pressure Cp = 0.269 BTU/lb-°F

Prandtl number P = 0.6975
r

2. HEAT GENERATION

If the velocity profile in the gap between seal and seal plate in the axial direction is linear

= U/h

The shear force is consequently F = I_A U/h, and the heat generated is

q = FU/J. Thus, for an air-film subvolume with an area of 7.75 in 2 on the seal and

seal plate surfaces, the heat generation is

ee,i

qi, j

0.0955 x 7.75 x 850 x 850

12 x 32.2 x 0.001 x 778

1780 BTU/hr.

if the gap is 0.001 inch, the surface velocity is 850 ft/sec and the air viscosity is 0.0955

lb/hr-ft.
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In the spiral-groove orifice configuration, the groove depths are deemed to be so small that

for purposes of these calculations they can be neglected. The heat generation in the sub-
volumes adjacent to the grooved surfaces of the seal are therefore also calculated as outlined

above. The heat generation for the shrouded Rayleigh pad design is calculated taking into

account the area covered by recesses and the recess depth.

3. SURFACE COEFFICIENTS FOR CONVECTIVE HEAT TRANSFER

For a number of the surfaces, the geometrics were similar enough to older seals that the

coefficients for convective heat transfer could be based on experience. Thus, for example, on
the back of the runner the values of if= 52 BTU/hr-ft 2 -°F at the larger diameters and .E =

42 BTU/hr-ft 2-°F were used. Over other surfaces, this experience factor was not available,

and coefficients for those surfaces were therefore calculated from dimensionless expressions

available in the heat-transfer literature. It is realized that these expressions apply more

directly to the simpler geometries for which they were obtained, but in the absence of more

precise information they were accepted as at least reasonably realistic for the seal geometries

analyzed. The details of the expressions used are given below.

a. HORIZONTAL ROTATING CYLINDER WITH NO CLOSE OBSTRUCTIONS

For turbulent flow (i.e. for Re > 15000) the dimensionless equation is

Nu = 0.073 Re °'7

The Nusselt number is

Nu =

and the rotational Reynolds number is

Re = coD2p/2/a

Thus, for the end seal at cruise conditions, the Reynolds Number is 1.172 x 107 and the

surface coefficient is h = 100 BTU/hr-ft 2 - °F if the runner is unobstructed over its perimeter.

b. CYLINDER ROTATING WITH A CONCENTRIC TUBE WITH SMALL AXIAL FLOW

For conditions above critical flow (i.e. for Ta > 90) the dimensionless equation is

Nu -- 0.350Nu Ta °'s
c

The Nusseit number is

Nu = hd/k
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The Nusselt number for pure conduction is

Nu =
e

The Reynolds number is

d

r i

d
In (1 +--)

r.
i

Re = riwdP//a

and the Taylor number is

Ta = Re(d) °'s

For small radial clearances between the cylinder and the tube, the Nusselt number for pure

conduction approaches unity. Thus, if it is assumed that the runner-to-compressor casing

clearance is 0.25 inch, the Reynolds number is

Re = 1.15x l0 s ,

the corresponding Taylor Number is

Ta = 1.52x 104 ,

the Nusselt number for pure condition is

Nu _ 1,
c

and the surface coefficient of convective heat transfer is

h= 75 BTU/hr-ft2-°F

c. ROTATING DISC WITH A CENTRAL HOLE WHICH ROTATES NEAR A

STATIONARY WALL

For turbulent flow (i.e. Re 3>3.1 x 10s ) the dimensionless equation is

[Nu = 0.0149 Pr 1/3 Re °'8 1 + --
r

o.1
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TheNusseltnumberis
Nu = hro/k

ThePrandtlnumberis

andthe Reynoldsnumberis

Pr = Cp/a/k

Re = _o0r ° 2//2

As an example, the low-pressure face of the runner adjacent to the seal is considered. Here
Re -- 6.87 x 104, so the flow is turbulent, and Nu = 1238. The surface coefficient if= 41

BTU/hr-ft 2-°F. Flow is greatly restricted, however, by the drum-like flange of the runner
and the surface coefficient of convective heat transfer was therefore estimated as ff = 24

BTU/hr-ft 2 -°F.

d. CHANNEL FLOW

For laminar flow the dimensionless expression is

Nu = ht/k = 3.75

The Reynolds number of flow over the convex surface of the C-spring, for example, is 1200
and the surface coefficient is

ff = 3 BTU/hr-ft2-°F

e. SURFACES ON THE SEALS EXPOSED TO LITTLE OR NO FLOW

Surface coefficients for convective heat transfer over seal surfaces which are sheltered from

windage effects of the runner could not be calculated, and estimates based on the expected

circulation were made. Thus, for the back surfaces of the seals, essentially stagnant condi-

tions were assumed, the surface coefficient if= 2 BTU/hr-ft2-°F. For surfaces closer to the
runner, larger coefficients were assumed, for example if= 4 BTU/hr-ft 2-°F over the recessed

portion of the outer diameter of the semirigid seal.

The estimates of circulation and surface coefficients were more difficult, for example, in the

space bounded by the semirigid seal, the piston ring and the compressor casing. The values
of the surface coefficient were assumed here to vary from if= 10 BTU/hr-ft2-°F to fi-= 2

BTU/hr-ft 2-°F depending on how much the circulation had been attenuated over the surface
considered.
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A

D

F

J

L

R

T

U

a,i,j, Lm,n

b

C
P

d

h
nl

h

k

rh

q

i,o

q

r

r i

r
o

s

4. NOMENCLATURE

area (in 2)

diameter (in.)

force (to shear air film) (lb)

mechanical equivalent of heat (ft-lb/BTU)

length dimension, total distance between nodal points, (in.)

thermal resistance (hr°F/BTU)

temperature (o F)

runner surface velocity (ft/sec)

indices

thickness (inches)

specific heat (BTU/Ib °F)

radial clearance (inches)

gap between seal and runner (inches)

mean surface coefficient of convective heat transfer (BTU/hr ft 2 °F)

thermal conductivity (BTU/hr ft °F)

mass flow rate (lb/hr)

heat flux (BTU/hr)

volumetric heat generation (BTU/hr/subvolume)

radius (in)

inner radius (in)

outer radius (in)

mean axial gap between rotor and stationary part (in)

channel depth (distance between bounding walls) (in)
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APPENDIX C

OC DIAPHRAGM END SEAL

TASK I THERMAL CALCULATIONS

1. INTRODUCTION

The design which is analyzed in this Appendix is shown in Figure 1.
define the design are listed below.

Core ambient temperature

Outer ambient temperature

Supply flow
Vent flow

Conductivity of rotating element (inco 901)

Conductivity of stationary element (Inco 750)

'Rotational speed

Average seal radius

Other conditions which

1136°F

1200°F

10 x 10 .4 lb/sec-in

8.4 x 10 -4 lb/sec-in

11.2 BTU/hr-ft-°F

11.9 BTU/hr-ft-°F

4.4 x l0 s rev/hr
13.5 inches

For the temperature calculations, all surface heat-transfer coefficients were derived from the

calculations discussed in Appendix B. The seal clearances which are used for the heat genera-
tion and admittance calculations take into account the relative areas of the land and recess

regions. Also, the effect of flow through the piston ring seal is included.

The results of the calculations are shown in Figure 57 in the form of a steady-state tempera-
ture map of the OC diaphragm end seal.

2. ANALYSIS

a. HEAT GENERATION

Heat generation in the seal clearance is calculated using the equation for a rotating disk and

stationary wall, and a linear velocity profile due to rotation.

] N2
q = 0.318 \ b / /_

where
q

R=

_=

b =

N=

/a=

heat generation (BTU/hr)

mean radius of the element (ft)

radial length of the element (ft)

axial clearance (ft)

rotational speed (rev/hr)

dynamic viscosity (lbf-hr/ft 2 )

For gas nodes 73 and 77 in the seal clearance, the value of the axial clearance "b" is ob-

tained by taking the area-weighted average of the clearances of the land and recess. The
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nodal network used is shown in Figure 58.

vent holes is neglected.

In all cases

and

so that

and

The area loss due to the presence of supply and

N = 4.4 x l0 s (rev/hr)

/_ = 2.29 x 10 -1° (lbf-hr/ft 2)

N 2/a = 44.4

q = 14.1/\_ R3_}
\b/

(70)

For nodes 73 and 77, Equation 70 is rewritten

(, 1 A+)Q 14.1 R3_\A t b_ A t

where the subscripts _, r, and t refer to the land, recess and added properties. The heat
generation for nodes 73 through 78 is tabulated in Table XVI.

Node

73

74

75

76

77

78

TABLE XVI

HEAT GENERATION

Area Area
Heat

Radius Radial Axial Axial Ratio Ratio Generation
Mean Length Clearance Clearance A_ Af q

R fit) _ fit) b_ (ft) b r fit) A t A t (Btu/hr)

1.17 0.0208 8.35x10 -s 2.71x10 "4 0.62 0.38 4170

1.15 0.0208 8.35x10 -s 0.0 1.0 0.0 5350

1.13 0.0250 1.46x10 -3 0.0 1.0 0.0 340

1.11 0.0067 8.35x10 -s 0.0 1.0 0.0 1510

1.09 0.0278 8.34x 10-s 1.875x10 "4 0.47 0.53 1390

1.07 0.0067 8.35x I 0 -s 0.0 1.0 0.0 4300

TOTAL 17060
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b. HEAT TRANSFER COEFFICIENTS

(1) Seal Clearances

Pure conduction (k = 0.037 Btu/hr-ft-°F) is assumed across the seal clearances at nodes 73 to

78 inclusive. The width of the clearance used in these calculations is the area-weighted

average of the clearances at the land and recess. The quantity "b" is tabulated in Table XVII.

A_b£ + Arb r
b =

A t

Node

TABLE XVII

WEIGHTED AXIAL CLEARANCE

Area Area
Land Recess Weigh tedRatio Ratio
Axial Axial Axial

A_ A
r Clearance Clearance Clearance

A t A t b_(in) b r (in) b (in)

73 0,62 0.38 0.0010 0.00325 0.0018

74 I °0 0.0 0.0010 0°0 0.0010

75 1.0 0.0 0.0175 0.0 0.0175

76 1.0 0.0 0.0010 0.0 0.0010

77 0.47 0.53 0.0010 0.00225 0.0017

78 1.0 0.0 0.0010 0.0 0.0010

(2) Piston Ring Clearance

The average clearance at the piston ring (between metal nodes 7 and 6) is calculated using
the same method which is used at the seal clearances. In this case

b = 0.125(0.0005) + 0.875(0.001) = 0.00098 inch

(3) Vent and Supply Holes

The total vent flow is

W = 8.4 X 10 "4 lb/sec-in

so that using an average radius of 13.5 inches, and assuming 154 vent holes, the amount of
flow per hole is

8.4 x 10-4 (13.5)
w = - 4.63 x 10.4 lb/sec

v 154
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The Reynold's number for pipe flow in any one hole is

pVD pw v 4wvD 4w v
Re = - D= -

# pA _D 2 # _r#D

where

so that

D= 0.125/12 = 1.04x 10 .2 ft

p = 2.4 x 10.2 lb/ft 3

# = 2.65 x 10-s lb/sec.ft

Re = 2140 (low transition range)

For laminar conditions, the Graetz chart (which includes entrance effects for a sharp-edged

sudden contraction) yields a mean film coefficient of h = 60 BTU/hr-ft -° F).

For the supply flow of

w = 10 x 10 .4 lb/sec-in

at 13.5 (in) and 77 holes, the flow per hole yields a Reynolds number of 5100 (mid-

transition). Using a Latzko connection factor for entrance effects and the Colburn-Reynolds

type equation for turbulent pipe flow, the mean film coefficient is h = 110 BTU/hr-ft 2 -°F).

c. ADMITTANCE MATRIX

The heat transfer areas between the vent and supply holes and the metal (nodes 13, 14, 15)

are summarized in the following tabulation.

Area/Node (ft 2 )

Node A o (Area/hole node) (ft 2 ) Av = 154A o A s = 77 A

13 4.85 x 10 .4 7.47 x 10 .2 3.74 x 10 .2

14 6.23 x 10.4 9.60 x 10 .2 4.80 x 10.2

15 6.92 x 10 .4 10.65 x 10 .2 5.33 x 10 .2

TOTAL 17.97 x 10.4

Using the film coefficients of 60 and l 10 for the vent and supply holes respectively, the

admittances for nodes 13, 14, 15 are summarized in the following tabulation.
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Node

13

14

15

Av(ft2 )

7.47 x 10.2

9.6 x 10.2

10.65 x 10.2

h a (B tu/hr-ft 2 -° F) Y (Btu/hr-°F)

60 4.48

60 5.76

60 6.38

A
S

h Y
S S

3.74 x 10 .2 110 4.12

4.8 x 10 .2 110 5.28

5.33 x 10 -2 110 5.87

Thus,

Nodes Admittance Y (Btu/hr°F)

13/82 4.5

Vent 14/82 5.8

15/82 6.4

13/83 4.1

Supply 14/83 5.3

15/83 5.9

All other admittances are computed using MTI Program PN0317. The pertinent input and

output data are included as Tables XVIII and XIX.

d. HEAT BALANCEEQUATIONS

(1) Heat Exchanger

The region which is represented by metal nodes 13, 14, 15 is a complex heat transfer net-

work. In this region, the 77 supply holes exchange heat with the 154 vent holes by forced

convection, and by conduction through the metal. This is shown in the model given in

Figure 59. The way in which the nodes of the model are connected to construct the heat

balance equations is shown in the flow chart at the bottom of the same figure. Figure 60
shows the connection between this flow chart and the over-all fluid network for the end

seal heat-balance calculation.
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VENT Q

W V = 8.4 x 10 -4

SUPPLY

WS=I0 x 10 -4 (LB/SEC-IN)

TA= 1200 F

METAL NODES

13, 14, 15

VENT

HOLE

FILM

SUPPLY •
METAL HOLE

NODES FILM
II

13, 14, 1.5 _-="-,.'__1

Figure 59 Model and Heat Flow Path for Heat Transfer in the Region of Metal Nodes

13, 14, and 15
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@

_VENT

METAL
NODES

13, 14, 15

I

_A

f-

®
• SUPPLY 1

FILM J.,.

,)

Figure 60 Flow Chart of the Entire Fluid Heat Transfer Path for the OC Diaphragm

End Seal

(2) Flow Terms

A summary of the flow terms which are required in the heat balance equations are tabulated
below.

WCp

Flow Flow w /BTU/hr_**

Nodes (lb/sec-in X 10 4) (lb/hr)* \ °F ]
l l

79/73 1.7 51 13.8

73/74 1.7 51 13.8

79/74 1.7 51 13.8

74/75 3.4 102 27.6

79/83 10.0 30O

83/85 10.0 300

85/77 10.0 300

w(lb/hr) = 3.10 s w (lb/sec-in) at a radius of 13.5 inches

cp = 0.27 (BTU/lb-°F) at 1200°F
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77/78 5.0 150 40.5

78/80 5.0 150 40.5

77/76 5.0 150 40.5

76/75 5.0 150 40.5

75/84 8.4 252 68.0

84/82 8.4 252 68.0

82/80 8.4 252 68.0

79/81 28.6 7.7

81/80 28.6 7.7

(3) Heat Balance Matrix

The over-all heat balance is obtained using MTI program PN0060 (READ 1). The defined

temperatures in the 86 x 86 matrix inversion are"

T = l120°F

T72 = 1136°F

T79 = 1200°F

T = i136°F
80
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APPENDIX D

TEMPERATURE ANALYSIS OF THE SEMIRIGID

INTERSTAGE SEAL

1. INTRODUCTION

The semirigid interstage seal design which is used in the temperature calculations is shown in

Figure 2. Pertinent design parameters for this configuration are listed below.

Orifice supply flow

Main supply flow

Seal conductivity (Duranickle)

Runner conductivity (Inco 901 )

Carrier conductivity (Inco 750)

Rotational speed

Mean radius of the seal

8.68 x 10 s lb/sec-in

9.02 x 10 s lb/sec-in

25.0 BTU/hr-ft°F

11.2 BTU/hr-°F

11.8 BTU/hr-ft°F

4.4 x 10 s rev/hr

14.3 inches

The results of the calculations are shown in Figure 41 in the form of a steady-state tempera-
ture map of the semirigid interstage seal.

2. ANALYSIS

a. HEAT GENERATION

Heat is generated in the seal clearance by both Couette and turbulent action according to
Reference 9. In the calculations which follow, it is initially assumed that the seal has under-

gone a 3-milliradian counterclockwise tilt with respect to the runner. This is the free-body

tilt which would result if the seal were subjected to a linear axial temperature gradient of

about 23 degrees Fahrenheit along its axial dimension. The mean operating film thickness

which corresponds to this amount of tilt is 1.6 mils. The reason for making the assumption
of an initial tilt is to compute realistic values of heat generation, thermal resistance across

the seal clearance, and seal flow. The table below gives the dimensions used for Nodes 58-61.

bm R £ b

Node (mils) (in) (mils) (mils)

58 1.60 14.49 100 2.16

59 1.60 14.37 140 1.79

60 1.60 i4.23 130 1.37

61 1.60 14.10 130 1°00

Q

b r An Ar [ Btu '_
(mils) A--_" A--'_- \-_r ]

4.41 .62 .38 2220

4.04 .62 .38 3131

0.0 i.00 0.0 2974

0.0 1.00 0.0 3094

TOTAL 11419
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Here nodes 58 and 59 are for the land and groove and nodes 60 and 61 are for the orifice

regions. Also, it is assumed that the average recess depth is 2.25 mils.

Heat generation for the turbulent region (Node 57) is computed using Reference 9 for
merged turbulent boundary layers. A value of 2144 BTU/hr was obtained, raising the
total amount of heat generation to 13,503 BTU/hr.

b. HEAT-TRANSFER COEFFICIENTS

(1) Seal Clearances

Equivalent heat-transfer coefficients, which correspond to pure conduction across Nodes
58-61 are calculated using a gas conductivity of 0.037 BTU/hr-ft-°F. The total seal clear-

ance at each node is computed assuming the 2 milliradian tilt discussed above, and is modi-
fied according to the relative amounts of land and recess areas present. The results are tab-
ulated below based on the equation of the weighted clearance.

b = (A£ b£ + A r br)/A t

Node

b_ b r A£ A b he qu iv

(mils) (mils) A t A t (mils) (BTU/hr_ft 2 _oF)

58 1.73 3.98 .62 .38 2.58 340
59 1.49 3.74 .62 .38 2.34 380
60 1.21 0.0 1.00 0.0 1.21 730
61 0.95 0.0 1.00 0.0 0.95 930

For Node 57, a forced convection value of h = 130 BTU/hr-ft 2 - o F was obtained from

Reference 9, assuming a clearance of 60 mils.

(2) Supply Holes

There are 360 supply holes which pass through the seal. These carry the total supply flow

of 9.02 x 10 "s lb/sec-in to the orifice region. Using a mean radius of 14.3 inches, this gives
a flow of 4.64 lb/hr and a value, for each hole, of

w = 1.29 x 10"2 lb/hr

Using a gas viscosity of/a = 9.7 x 10"2lb/hr-ft, the approximate Reynold's numbers for this
flow, as it passes through the seal are
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Nodes
Re =_

4w 0.169

triaD D

9,6,16 25

22 51

24 82

The corresponding surface heat-transfer coefficients for these low laminar conditions are
calculated from Nu = 4, or

k
h=4 -

D

Nodes _-(BTU/hr ft 2 °F)

9,6, 16 22

22 45

24 71

Because these fi- values are quite low (equivalent to about 4 to 12 inches of metal), the film

resistance is large, compared to the resistance due to conduction between holes. The metal

conduction resistance between holes is therefore neglected in all further calculations.

c. ADMITTANCE MATRIX

The admittance between the flow in the supply holes and the seal is calculated below. In

the tabulation below, the values of hole diameter D, length £, area A, and coefficient fi-are

the values for a single hole. The value of admittance Y is for the combination of 360 holes.

D _ A h- Y = 360 h-A

Node (It) (ft) (ft 2 ) BTU/hr-ft 2 -°F BTU/hr-° F

9, 16, 16 6.83 x 10-3 0.12 2.14 x 10 .4 22 1.8

22 3.33 x 10 -3 0.18 1.57 x 10 .4 45 2.5

24 2.08 x 10 .3 0.06 3.27 x 10 -s 71 0.7

For the heat-balance calculations, Nodes 9, 16, 16 are connected to gas node 63. Nodes 22,

24 are connected to gas node 64. All other admittances are calculated using MTI computer

program PN0317. Input and output data are shown in Tables XX and XXI, respectively.

PAGE NO.181



PWA-3302
PRATT & WHITNEY AIRCRAFT

d. HEAT BALANCE EQUATIONS

(1) Defined Temperatures

Temperatures are defined at Nodes 52, 53, 54, 55, 56, and 62 as follows:

Ts2 = I100°F

T53 = 1180°F

Ts4 = Tss = T56 =T62 = 1200°F

The value for Node 52 is believed to be a reasonable estimate based on previous calculations.

(2) Flow Terms

A summary of flow terms which are used in the heat balance equations are tabulated below.

l0 s x Flow Flow* w Cp**

Nodes (lb/sec-in) (lb/hr) (BTU/hr-°F)

62/57 8.68 28.1 7.58

57/58 8.68 28.1 7.58

58/59 8.68 28.1 7.58

59/60 8.68 28.1 7.58

60/61 8.68 28.1 7.58

62/63 9.02 29.2 7.88

63/64 9.02 29.2 7.88

64/61 9.02 29.2 7.88

61/53 17.7 57.3 15.46

* Mean radius assumed to be 14.3 inches

** cp = 0.27 BTU/Ib-°F at 1200°F
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APPENDIX E

STIFFNESS AND DISPLACEMENT CALCULATIONS

FOR COMPOSITE THIN RINGS

1. INTRODUCTION

The analyses which follow apply to small rotations of thin rings which do not change cross-

sectional shape during rotation. These conditions are reasonably satisfied if the sine of the

rotation angle is approximately equal to the rotation angle (in radians), the over-all radial

length of the cross section is less than 10 percent of the radius of the centroid, and the cross

section is compact. The analysis is in three parts: rotation stiffness of a ring for a prescribed
center of rotation, rotation of a two-section ring for prescribed values of initial radial and

angular mismatch, and thermal distortion of a two-section ring.

2. ANALYSIS

a. ROTATIONAL STIFFNESS FOR A PRESCRIBED CENTER OF ROTATION

(1) Hoop Stress and Force

Referring to Figure 61, the prescribed center of rotation is at Cr and the rotation is 0. As
point A moves to point B, a hoop strain e is developed.

X X

r a

X" --

CL

l
Y

l
XX

X I X w

7 0

X

a

x p

Line which passes through both
the ring center line and the

centroid C and, which lies in a

plane parallel to the plane of

the ring.

Line which passes through

both the ring center line and

the center of rotation C r and,

which lies in a p!a,_e parallel

to the plane of the ring.

Figure 61 Rotation of the Cross Section of a Ring Around a Prescribed Center of
Rotation
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where, from geometry

or

so that

x y

RO R

x=yO

e = yO
a

The corresponding hoop stress at any point in the cross section is therefore

Ey
o = Ee - 0

a

(71)

The corresponding ne_._.Lthoop force over the cross section A is

F = fodA EOf Ey-A0- - ydA - - (lb)
a a

A A

where y is the distance measured from a line X'X'. Line X'X' is defined to be in a plane

parallel to the plane of the ring and to pass through the center of rotation Cr.

X X, and a lineAlso, _'A is the first moment of area of cross section A with respect to line ' '

XX which passes through the centroid C of the cross section.

(2) Moment Due to Hoop Stress

The moment around line X'X'of the forces due to the hoop stress o is (from Figure 61 )

M = J(odA)y (in-lb)

A

(72)

combining Equations 71 and 72,

f EO f EIOM = (dA)y - y2dA -
A a a A a

(73)

where I is the second moment of area of A with respect to line X'X'.

(3) Equilibrium

Suppose that the prescribed rotation is caused by a uniformly distributed moment M h (in-lb/

in) only. Consider half of the ring (as shown in Figure 62) as a free body. Then for

equilibrium
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7i"

2M = 2f_'M b (bsin4)) d@ (74)
o

Substituting M from Equation 73 into 74,

7r

EI fT
2 -- 0 = 2bM b sin q) d_b

a 0

El
or Mb ab 0 (75)

Next, suppose that from geometry, the motion of the cross section is written in terms of an

outward radial motion x c of the centroid plus a rotation 0 c around the centroid

0 c = 0 (76)

x c = 70 (77)

Consider first the moment M0 required only to produce 0 c around the centroid.

From Equation 75 and 76

EI EI

MO ab Oc ab 0 (78)

C
r

X

Ci b (in. Ib/in)

Figure 62 Free-Body Diagram of One Half of a Ring
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but, because the rotation is defined to be around the centroid (which has the radius a),

b = a (79)

Also, the line X'X' coincides with line XX, so that _ = 0.

But I = ]- + A_ 2 (80)

where T is the second moment of area of A with respect to line XX

so that combining Equations 78, 79, and 80 with y = 0,

M0 - 0 (81)
a 2

Note that this moment could be applied anywhere in the plane of the cross section as long as

its radius is equal to a.

Next, from geometry

x =ea
c

but
o F

E AE

Figure 63

F(ib)

O o (Ib/in)

FOb)

Free-Body Diagram of One Half of a Ring with a Uniform Radial Force (Qo)

Applied Outward through the Centroid
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where F (net hoop force over the cross section) is the force required to produce the outward
motion of the centroid, i.e.

AE
F =-- x (82)

a c

For equilibrium (see Figure 63),

2F= 2 f2 Qo (a sin q_) d _b (83)

0

so that combining Equations 82 and 83

F
Qo = -- (84)

a

Note that the combined moment (of M0

Cr = C, would be
and Qo ) around any other point of rotation, say

Mo = M0 + Qo _" (85)

where'_ is the perpendicular distance from the line of action of Qo to a parallel line through
Cr. Using Equations 77, 82 and 84, Equation 85 can be rewritten

(9El'0 + y y 0 (]" + A_ 2)
Mo a2 a 2

E0
or M - I

o

a 2

which checks with Equation 75.

Finally, suppose that a pure moment is applied to the ring, i.e.

M =M
o o

Qo = 0

The last eqution indicates that the net hoop force over the cross section is zero, so that from

Equation 8!, the radial displacement of the ce_ntroid must be zero. This can be true if and
only if the center of rotation coincides with the centroid.
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b. TWO-SECTION THIN RING WITH PRESCRIBED INITIAL RADIAL AND

ANGULAR MISMATCH

The composite ring shown in Figure 64 is assumed to consist of two sections (1 and 2) which
are mismatched due to thermal distortion by the radial displacement x and rotation 0. (See

Section c). It is desired to find the equilibrium angle 0 o of the composite ring.

For compatibility of displacement and rotation,

x = x I x 2 (86)

0 = 01 - 02 (87)

YY = LINE THROUGH THE AXIAL CENTER OF THE CYLINDRICAL SURFACE OF
INTERACTION OF THE TWO SECTIONS.

l
a 2

Figure 64 Mismatch Conditions for a Two-Section Ring
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From Equations 82 and 84, the radial forces required to displace the centroids of sections l

and 2 by the amounts x I and x 2 are:

AlE
Ql = _xl (88)

A2E

Q2 - x2 (89)
2

a 2

For equilibrium

EQ = 0 = Q1 + Q2

so that from Equations 88 and 89,

A 1 A 2

--X 1 +_X 2 = 0 (90)

Solving Equations 86 and 90 simultaneously,

fa_ a, 2A 2 t
= " X

2 AA_ + a I

X 2 :f a 2A1l+a, Ax
so that, substituting X 1 and x 2 back into Equations 88 and 89

=F EAIA2 _x

Q1 [_2A1 + a--21A2 ]

(91)

_F EA1A2 lx

Q2 = La _ A-_ + a21Aj

These are the forces which are required, if applied at the centroids of sections 1 and 2, to
close the initial mismatch x.
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The elastic forces which oppose the forces Q_
rotation 0 .

x

and Q2 form a couple Mx which causes a

Mx = QlYo (92)

where Yo = -+(Yl + Y2)" The value ofy ° is taken to be positive if the centroids of sections 1
and 2 are to the left and right, respectively, of the interaction line YY in Figure 64.

Thus, combining Equations 91 and 92,

EYoAIA 2 __M = ..... x

x _ka2 22/2Al + alA

so that from Equations 80 and 81,

a2 a2yoAIA 2
0 - _ M = x (93)

x El x _(a2Al + a]A2)

The moments required to close the mismatch rotation 0 between sections 1 and 2 are (from

Equation 75)

El l
M l = _ 01 (94)

2
a I

For equilibrium

so that from Equations 94 and 95

EI 2
M 2 - 0 2 (95)

2
a

2

EM = 0 = M_ + M2

I l 12
--0_ +--02

2 2
a I a 2

= 0 (96)
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Solving Equations 87 and 96 simultaneously,

01 = _2 1 la2_2a2112_

0 (97)

=_: a2211

02 _-a2i: ._a212:0

(98)

If0 * is the initial angle of section 1, the final angle caused by the moments M 1and M 2 is

0 M = (01* Jr 01) ---- (02* Jr 02) (99)

so that, combining Equations 99 and 97 or 98,

I l_ a2112 2/ 1 I t a2'l i/ 1
Jr - "- 0 = 02* - 0

0M = 01" 22I1 + a]I 2I 1 + a_I
(lOO)

With respect to a perpendicular to the plane of the ring, the final angle 0
o

mismatch (x, 0) is obtained by adding Equations 93 and 100.

due to the initial

a 2 YoA 1 A2 al 2 i2
= x Jr

0 o = 0 x + 0 M ]-(a 2 A1 + a 2 A2) a221 + a212 0 +
2 1 1

01"

or if 2 _., 2 ,-. a 2
a I -- a 2

YoA1A2 12
= X+ 0+0"

0o T(A1 + A2 ) I1 + I2 l
(101)

YoA1A2 I1
or 0 = x 0 -I- 02*

o ]-(A 1 +A2 ) I1 + I2

But 11 + 12 = T

A 1 + A 2 = A

so that Equations i01 and 102 can be rewritten

0 ° -- 01, 2
A1 A2 Yo 1

X -+ 12 0A ,1

+ 7

(102)
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NOMENCLATURE

A

A
1,2

C

C
1,2

E

T

1
1,2

MI,2

M X

Q1,2

YY

a 1,2

h
1,2

1,2

X

Xl,2

YO

Defined by (Al+ A 2)

Cross-Section areas of sections 1 and 2 (in 2)

Combined centroid of the two-section ring

Centroids of A
1,2

Elastic Modulus (psi)

Second moment of A with respect to a line which both passes through C

and the ring center line, and is parallel to the plane of the ring (in 4 ).

Defined by (I] + 12)

Second moments of A 1,2with respect to a line which both passes through
C and the ring center line, and is parrallel to the plane of the ring (in 4 ).

Uniformly distributed moments which are required on sections 1 and 2 to
close the mismatch rotation (in lb/in)

Uniformly distributed moment which is produced by radial forces Q 1,2
and the lever arm Yo (in lb/in)

Uniformly distributed radially outward forces required to produce cen-

troid displacements x 1,2(lb/in)

Interaction line (Figure 4). A line, perpendicular to the ring center line,

which defines the axial center of the cylindrical surface of interaction
between sections 1 and 2.

Radii of the centroids C 1 , C2, of sections 1 and 2 (in)

Radial heights of sections 1 and 2 (in)

Axial lengths of sections 1 and 2 (in)

Total radial mismatch of free body sections 1 and 2 defined by (x r - x 0 )

Radial displacements of C 1,2 from their initial (free body) positions to
their positions at final equilibrium. Positive radially outward (in)

Defined by +_ (Yl + Y2)" Use (+) ifC 1, C2are to the left and right, respec-
tively, of the interaction line YY (in). Use (-) for the reversed positions.

See Figure 4.
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NOMENCLATURE (Cont'd)

Y 1,2

0

0
1,2

0 X

0M

0
O

Distance measured axially from C 1,2 to the interaction line YY (in).

Initial angular mismatch between free body sections 1 and 2. Defined by

( 02* -- 01" )

Rotations from their initial (free body) positions ( 01 *, 02 *) to their

positions at final equilibrium. Positive counterclockwise (radians)

The portion of 0owhich is caused by the moment Mx(radians)

The portion of 0o which is caused by moments M 1,2 (radians)

Final equilibrium angle which the complete ring makes with the ring

center line (radians). Defined by ( 0x + 0u ), positive counterclockwise.
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c. THERMAL DISTORTION OF A TWO-SECTION RING

Suppose that a two-section ring as shown in Figure 65 has linear axial temperature gradients

G 1, G 2 in the two sections. For a uniform coefficient of thermal expansion in the ring, the

free-body angular positions of the two sections are

01" = aaG 1 (103)

02* = aaG 2 (104)

so that the initial angular mismatch is

0 - 02* - 01" = a a (G 2 - G 1)

where a = radius of the combined centroid C (in)

Next, the values of initial radial position of section 1 and 2 are expressed by x 1* and x2*
below

• =aa(T 1 -T)Xl o

m

x 2. = a a (T 2 - T o)

where T O= initial uniform temperature of the ring, OF

"TI, 2 = average temperatures of the two sections, OF

so that X r -- x 2. - x 1. = a a A T

where A T - (T 2 T 1)

I

and the value of x r is taken to be positive if AT tends to cause a clearance. The value of x 0
is

* 01" + - 02*XO = X OI + X02 _ Oi Yl - "4- 02* Y2 7

where values of 01", 02. are given by Equations 103 and 104. The value of x is positive if

the centroids C1 and C 2 are to the left and right, respectively, of the interaction line YY.

The initial radial mismatch x is

X = Xr -- X 0
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p-

TA

I.-

0

FINAL POSITION

_"_" I N IT IA L POSITION

CL

Radial Growths 6a -_ a a (T s. T)

6A_- a a (T A_To)

Angle of Rotation 0--- tan-I ( 6B 'A_) 6B 'A

SO that 0 = aa
T (X8 TA)

or 8 = aa G

Figure 65

Rotation of a Thin Ring with a Linear Axial Temperature Gradient
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APPENDIX F

THERMAL ROTATION CALCULATIONS FOR

SEMIRIGID INTERSTAGE SEAL

1. INTRODUCTION

The final Task I semirigid interstage seal design is shown in Figure 2. The steady-state tem-

perature distribution used in these calculations is given in Figure 41. For the rotation calcu-

lation, the cross section is divided into four sections with the temperatures that are indicated

in Figure 66. Finally, the calculation of thermal rotation is done using equations from

Appendix E. Because of the temperature gradients predicted in Reference 9, the thermal

rotation of the interstage seal should not exceed 2.8 millradians.

2. ANALYSIS

The semirigid seal is divided into four sections as indicated in Figure 66. In the analysis
which follows, sections 1 and 2 are matched and the resulting rotation and radial motion

calculated. This is also done for sections 3 and 4. Finally, sections 1 and 2 are matched to

sections 3 and 4 and the final rotation of the entire seal is computed.

a. SECTIONS 1 AND 2

The following dimensions are used in conjunction with the ring analysis given in Appendix E.

a = 14.0 inches

AI = 0"0464(in2) T2 = 1300(°F)

A 2 = 0.0525(in 2) 71 = 1294(°F)

A = 0.0989 (in 2) AT=T 2-T 1 =6(°F)

m

I = 7.79 x 10 -4 (in 4) 01' = 02* = 0 (radian)

a = 8.5 x 10 "6 (radian) 0 = 0(radian)

Yo = -0.072 (in) x = aaZxT= 14 (8.5X10 "6) (6) = 6.7x10 "4

0T2 -- A[A2YoX
A]" - -1.61 (10 3) radians (clockwise)

The ..... ÷ " •..... u._ of outward relative --_; i,au.ai motlon of the °_*_'-" 2 ,,,_,h respect to o -*_oe,,dvn I Iso_,_ _,4 i, iUl i Vy I L.II

given by

A 2

x* - x = 3.74(10 .4 )
12 A
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.--_ 0.72

(1300) 0 C2

c,2T
(1294)

C]

]
I
|

.///

///
///
///

<S
///

0 C

(1312)

C 3

0.488 -_-

0.115

C4

(1317)

C34

(1321)

(14 IN RADIUS)

q_

C = Centroid of entire solid section

C = Centroid of combined sections 1 and 2]2

C34 = Centroid of combined sections 3 and 4

( ) = Temperatures (°F)

Figure 66 Thermal Rotation Model of the Semirigid Interstage Seal
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b. SECTIONS 3 AND 4

For this calculation,

a = 14 (inches)

A 3 = 0.218 (in 2)

A 4 = 0.05 (in 2)

A = 0.268 (in 2)

23 = 0.6 (inch)

24 = 0.25 (inch)

12 =

L

L

03*

04*

0 = 04*

8.5 x 10-6(radian)

1312+ 1321 = 1316.5(OF)
2

1317 (°F)

= aaG 3 = 1.79 x 10-3 (radian)

=0

- 03. =-1.79 xl0 -3 (radian)

A3A4Y o
X -I 3 0A

0if4 -- 04* Jr
I

Yo = 0.115 (inch)

Y3 = 0.115 (inch)

Y4 = 0 (inch)

13 = 6.65 x 10.3 (in 4)

14 = 6.95 x 10.4 (in 4)

I = 7.35 x 10-3 (in 4)

G 3 = 9/0.6 = 15 (°F/in)

G 4 = 0 (°F/in)

AT = T4 -Y3 = 0.5 (°F)

xe o3*(y ,) 0.4= - -_- 03 = 2.05xl (inch)

x r = a12AT = 0.059 x 10.3 (inch)

x =x r-x 0 = 1.46x10 -4 (inch)

1.53 x 10 .3 (radian, counterclockwise)

The corresponding outward relative radial motion of the section 4 with respect to section 3

is given by

A 4

x3* 4 - x
A

= -2.75 x 10-5 (inch)

c. COMPLETE SEAL RING

The conditions used to compute rotation of the complete seal are:

a = 14.0 (inch) A34 = 0.269 (in 2)

A1 z = 0.0989 (in z ) A -- 0.367 (in 2)
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I12 = 0.01328(in 4) T34 = 1316.5(°F)

134 = 0.012(in 4) Tl2 = 1294 (OF)

- * = 3.74 x 10 .4 (inch)I = 0,0253 (in 4) x_z

Yo = 0.488 (in) X34" = 2.55 x 10-5 (inch)

, • + aa (T34 - Tl2) = 22.75 x 10-4
Yt 2 = 0.356 (in) xr = x34 - xl2 (inch)

Y34 = 0.132 (in) x012 = _0.58x|0 -3 (inch)

• = -1.61x 103 (radian) x0 = 1.58x10 "4(inch)012 34

034, = 1.18x 10 -3 (radian) x 0 = "4"2xl0"4(inch)

0=(1.18+ 1.61)x10-3=2.79x10-3(radian) x = 2.7x10"3( inch)'

]'hus,

0 ° = 034* +

A] _A34Y o 0 ix- 112
A

T = 3.43 x 10-3 (radian)
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Attn P H. Ku _ 1 Friction and Wear Division

• " "_ Annapqlis, Maryland

45. E. I. DuPont de Nemours & Co._. Attn. R. B. Snapp
1007 Market Street _\ ;;_

Wilmington 98, Delaware "_ 57. Me_al Bellows Corporation

Attn. A. J. Cheney "x_ 20_77 Knapp Street

R. J. Laux l_x _hatsworth, California
f_ttn. Sal Artino

46. Fairchild Engine & Airplane Corp. _ ;?

Stratos Division _ 5_' Rocketdyne

Bay Shore, New York 1 _ 6633 Canoga Ave.

_ Canoga Park, California

47. Borg-Warner Corporation 2 "N_ttn. M. Butner

Roy C. Ingersoll Research Center "_

Wolf and Algonguin Roads 59. Cairn Products Div. of

Des Plaines, Illinois 1 f UnionN__arbide Corporation

270 Park_venue

48. U.S. Naval Air Material Center New York'k_ New York

Aeronautical Engine Laboratory _ Attn. J. Cur_
Philadephia 12, Pennsylvania ;;

Attn. A. L. Lockwood 1 :: 60. Garlock, Incorpor'_d

'" Palmyra, New York "_522

49. Department of the Navy Attn. E. W. Fisher _\_
Bureau of Naval Weapons '_,

Washington. D.C. 61. Chemicals Div. of Union Carbi_e
Attn. A. B. Nehman. RAAE-3

C. C. Singleterry. RAPP-4

50. Department of the Navy

Bureau of Ships !

Washington 25, D.C.

Attn. Harry King, Code 634-A

51. SKF Industries, Inc. i
llO0 First Avenue

King of Prussia, Pennsylvania _\\
Attn. L. B. Sibley

52. Crane Packing Company
6400 W. Oakton Street

Morten Grove, Illinois

Attn. Harry Tankus

53. B. F. Goodrich Company

Aerospace and Defense Products Div.

Troy, Ohio

Attn. L. S. Blalkowski

Corporation

Technical Service Lab.

P.O. Box 65

Tarrytown. New York

Attn. J. E. Haaga

1 62. Durametallic Corporation

Kalamazoo, Michigan

Attn. H. Hummer

63. Morganite, Incorporated

33-02 48th Avenue

L.I.C. 1, New York

Attn. S. A. Rokaw

64. United States Graphite Company

1621 Holland

Saginaw, Michigan

Attn. F. F. Ruhl

65. Cartiseal Corporation

3515 West Touhy

Lincolnwood, Illinois

Attn. R. Voltik
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66. Department of the Army

U.S. Army Aviation Material Labs.

Fort Eustis. Virginia 23604

Attn. John W. White. Chief

Propulsion Division

67. Prof. George A. Brown

Dept. of Mechanical Engineering

University of Rhode Island

Kingston, R.I. 02881

68. AVCOM

AMSAVEGTT
J

Mart Building ,_

405 South 12th Street /'

St. Louis, Mo. 63100

Attn. E. England 1

2
69. Commanding Officer _.

U.S. Naval Underwate_ Weapons

N Research and Engm_ermg Section

_'_ Newport, R.I. 02ff40

.\ Attn. Technical _'ibrary, CS12 (B-566) 1

\
70. _tevens Instiy_te of Technology

Mk.chanical/Engineer ing Department

Hob_bken, !_. J. 07030

Attn.}_x E. Bales

71. Small_Stea_k& Gas Turbine

En ,_eering __ x

aet_ter Branch

_:.o. Box 9175 \
l_hiladelphia, Penn. "_9x113

"Attn. S._M. DeCorso _ 1

72. George B. Manning _x_

i' U,S,A, E.R.G. "_

Research & Technology Dept. _.

Ft. Belvoir, Virginia 22060 _i
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